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Lecture 19

Polynomial and Spline Interpolation

A Chemical Reaction

In a chemical reaction the concentration level y of the product at time t was measured every half hour. The
following results were found:

t 0 .5 1.0 1.5 2.0
y 0 .19 .26 .29 .31

We can input this data into Matlab as

� t1 = 0:.5:2

� y1 = [ 0 .19 .26 .29 .31 ]

and plot the data with

� plot(t1 ,y1)

Matlab automatically connects the data with line segments, so the graph has corners. What if we want a
smoother graph? Try

� plot(t1 ,y1 ,’*’)

which will produce just asterisks at the data points. Next click on Tools, then click on the Basic Fitting

option. This should produce a small window with several fitting options. Begin clicking them one at a time,
clicking them off before clicking the next. Which ones produce a good-looking fit? You should note that
the spline, the shape-preserving interpolant, and the 4th degree polynomial produce very good curves. The
others do not.

Polynomial Interpolation

Suppose we have n data points {(xi, yi)}ni=1. A interpolant is a function f(x) such that yi = f(xi) for
i = 1, . . . , n. The most general polynomial with degree d is

pd(x) = adx
d + ad−1x

d−1 + . . .+ a1x+ a0 ,

which has d+ 1 coefficients. A polynomial interpolant with degree d thus must satisfy

yi = pd(xi) = adx
d
i + ad−1x

d−1
i + . . .+ a1xi + a0 for i = 1, . . . , n.

This system is a linear system in the unknowns a0, . . . , an and solving linear systems is what computers do
best. If n = d + 1, then the system of equations has n equations and n unknowns, so in general there is a
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unique solution. This is the case in the example above: there are 5 data points so there is exactly one 4th
degree polynomial that interpolates the data.

If n < d+ 1 then the system is underdetermined and so in general will have an infinite number of solutions.
When we tried to use a 5th or higher degree polynomial above, Matlab returned a warning that the
polynomial is not unique since “degree >= number of data points”.

If the data {(xi, yi)}ni=1 has repeated x-values with distinct y-values, then the system of equations is incon-
sistent and there will be no solution. If n > d + 1 then the system has more equations than unknowns, so
it is overdetermined and in general will have no solution. In these cases Matlab does produce a function,
but it does not satisfy p(xi) = yi for i = 1, . . . , n and so is not an interpolant. Instead it is a least-squares
fit, which we will study in Lecture 20.

Predicting the future?

Suppose we want to use the data to extrapolate into the future. Set the plot to the 4th degree polynomial.
Then click the Edit button and select the Axes Properties option. A box should appear that allows you
to adjust the domain of the x axes. Change the upper limit of the x-axis from 2 to 4. Based on the 4th
degree polynomial, what will the chemical reaction do in the future? Is this reasonable?

Next change from 4th degree polynomial to spline interpolant. According to the spline, what will the chemical
reaction do in the future? Try the shape-preserving interpolant also.

From our (limited) knowledge of chemical reactions, what should be the behavior as time goes on? It should
reach a limiting value (chemical equilibrium). Could we use the data to predict this equilibrium value? Yes,
we could and it is done all the time in many different contexts, but to do so we need to know that there is
an equilibrium to predict. This requires that we understand the chemistry of the problem. Thus we have
the following principle: To extrapolate beyond the data, one must have some knowledge of the process.

More data

Generally one would think that more data is better. Input the following data vectors:

� t2 = [ 0 .1 .4 .5 .6 1.0 1.4 1.5 1.6 1.9 2.0]

� y2 = [ 0 .06 .17 .19 .21 .26 .29 .29 .30 .31 .31]

There are 11 data points, so a 10-th degree polynomial will fit the data. However, this does not give a good
graph. Thus: Polynomial interpolation is better for small data sets.

A challenging data set

Input the following data set:

� x = -4:1:5

� y = [ 0 0 0 1 1 1 0 0 0 0]

and plot it:
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� plot(x,y,’*’)

There are 10 data points, so there is a unique 9 degree polynomial that fits the data. Under Tools and
Basic Fitting select the 9th degree polynomial fit. How does it look? De-select the 9th degree polynomial
and select the spline interpolant. This should produce a much more satisfactory graph and the shape-
preserving spline should be even better.

The idea of a spline

The general idea of a spline is this: on each interval between data points, represent the graph with a simple
function. The simplest spline is something very familiar to you; it is obtained by connecting the data with
lines. Since linear is the most simple function of all, linear interpolation is the simplest form of spline. The
next simplest function is quadratic. If we put a quadratic function on each interval then we should be able
to make the graph a lot smoother. If we were really careful then we should be able to make the curve smooth
at the data points themselves by matching up the derivatives. This can be done and the result is called a
quadratic spline. Using cubic functions or 4th degree functions should be smoother still. So, where should
we stop? There is an almost universal consensus that cubic is the optimal degree for splines and so we focus
the rest of the lecture on cubic splines.

Cubic spline

Again, the basic idea of the cubic spline is that we represent the function by a different cubic function on
each interval between data points. That is, if there are n data points, then the spline S(x) is the function

S(x) =

 C1(x), x0 ≤ x ≤ x1
Ci(x), xi−1 ≤ x ≤ xi
Cn(x), xn−1 ≤ x ≤ xn

where each Ci is a cubic function. The most general cubic function has the form

Ci(x) = ai + bix+ cix
2 + dix

3.

To determine the spline we must determine the coefficients, ai, bi, ci, and di for each i. Since there are n
intervals, there are 4n coefficients to determine. First we require that the spline interpolate by requiring

Ci(xi−1) = yi−1 and Ci(xi) = yi,

at every data point. In other words,

ai + bixi−1 + cix
2
i−1 + dix

3
i−1 = yi−1 and ai + bixi + cix

2
i + dix

3
i = yi.

Notice that there are 2n of these conditions. Then to make S(x) as smooth as possible we require

C ′i(xi) = C ′i+1(xi) and

C ′′i (xi) = C ′′i+1(xi)

at all the internal points, i.e. x1, x2, x3, . . . , xn−1. In terms of the points these conditions can be written as

bi + 2cixi + 3dix
2
i = bi+1 + 2ci+1xi + 3di+1x

2
i and

2ci + 6dixi = 2ci+1 + 6di+1xi.
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There are 2(n − 1) of these conditions. Since each Ci is cubic, there are a total of 4n coefficients in the
formula for S(x). So far we have 4n − 2 equations, so we are 2 equations short of being able to determine
all the coefficients. At this point we have to make a choice. The usual choice is to require

C ′′1 (x0) = C ′′n(xn) = 0.

These are called natural or simple boundary conditions. The other common option is called clamped boundary
conditions:

C ′1(x0) = C ′n(xn) = 0.

The terminology used here is obviously parallel to that used for beams. That is not the only parallel between
beams and cubic splines. It is an interesting fact that a cubic spline is exactly the shape of a (linear) beam
restrained to match the data by simple supports.

Note that the equations above are all linear equations with respect to the unknowns (coefficients). This
feature makes splines easy to calculate since solving linear systems is what computers do best.

Exercises

19.1 You are given the following data:

� t = [ 0 .1 .499 .5 .6 1.0 1.4 1.5 1.899 1.9 2.0 ]

� y = [ 0 .06 .17 .19 .21 .26 .29 .29 .30 .31 .31 ]

(a) Plot the data, using ’*’ at the data points, then try a polynomial fit of the correct degree to
interpolate this number of data points: What do you observe? Give an explanation of this error,
in particular why is the term badly conditioned used?

(b) Plot the data along with a spline interpolant. How does this compare with the plot above? What
is a way to make the plot better?
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Lecture 20

Least Squares Fitting: Noisy Data

Suppose we have n data points {(xi, yi)}ni=1. In the previous section we learned about interpolation, where
the fitting function f(x) is required to satisfy yi = f(xi) for i = 1, . . . , n. Very often data has a significant
amount of noise, so it makes more sense to only ask for yi ≈ f(xi). The least squares fitting method produces
such an f . The next illustration shows the effects noise can have and how least squares is used.

Traffic flow model

Suppose you are interested in the time it takes to travel on a certain section of highway for the sake of plan-
ning. According to theory, assuming up to a moderate amount of traffic, the time should be approximately

T (x) = ax+ b

where b is the travel time when there is no other traffic and x is the current number of cars on the road (in
hundreds). To determine the coefficients a and b you could run several experiments which consist of driving
the highway at different times of day and also estimating the number of cars on the road using a counter.
Of course both of these measurements will contain noise, i.e. random fluctuations.

We could simulate such data in Matlab as follows:

� x = 1:.1:6;

� T = .1*x + 1;

� Tn = T + .1* randn(size(x));

� plot(x,Tn ,’.’)

The data should look like it lies on a line, but with noise. Click on the Tools button and choose Basic fitting.
Then choose a linear fit. The resulting line should go through the data in what looks like a very reasonable
way. Click on show equations. Compare the equation with T (x) = .1x + 1. The coefficients should be
pretty close considering the amount of noise in the plot. Next, try to fit the data with a spline. The result
should be ugly. We can see from this example that splines are not suited to noisy data.

How does Matlab obtain a very nice line to approximate noisy data? The answer is a very standard
numerical/statistical method known as least squares.

Least squares

The least squares method requires you to first select what type of f to consider (sometimes called a model)
and what parameters it depends on. For example, you might choose

f(x) = a1 exp(a2x) + a0 or f(x) = a2x
2 + a1x+ a0 .
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Given data {(xi, yi)}ni=1, we can then determine the error at each point as ei = yi − f(xi). To make f
reasonable, we wish to simultaneously minimize all the errors {e1, e2, . . . , en}. There are many possible ways
one could go about this, but the standard one is to try to minimize the sum of the squares of the errors.
That is, we denote by E the sum of the squares

E =

n∑
i=1

e2i =

n∑
i=1

(yi − f(xi))
2
.

Since f depends on some parameters, E is a function of those parameters. To minimize E , we can compute
the partial derivatives of it with respect to each of the parameters, set the results equal to zero, and solve
the resulting system of equations.

Linear least squares

If we choose f to depend linearly on the parameters, then the resulting system of equations will be a linear
system, which is easy to solve. This does not mean we have to choose f to be a line. For example, the
function f(x) = a2x

2 + a1x + a0 is a quadratic in x, but depends linearly on each of a2, a1, and a0. To
illustrate the linear least squares process, we will go through it using this quadratic f .

The error is

E(a0, a1, a2) =

n∑
i=1

(
yi − (a2x

2
i + a1xi + a0)

)2
,

which has partial derivatives

∂E
∂a0

= −2

n∑
i=1

(
yi − (a2x

2
i + a1xi + a0)

)
,

∂E
∂a1

= −2

n∑
i=1

(
yi − (a2x

2
i + a1xi + a0)

)
xi , and

∂E
∂a2

= −2

n∑
i=1

(
yi − (a2x

2
i + a1xi + a0)

)
x2i .

Setting these equal to zero and rearranging yields the linear system

n∑
i=1

1

n∑
i=1

xi

n∑
i=1

x2i

n∑
i=1

xi

n∑
i=1

x2i

n∑
i=1

x3i

n∑
i=1

x2i

n∑
i=1

x3i

n∑
i=1

x4i


a0a1
a2

 =



n∑
i=1

yi

n∑
i=1

yixi

n∑
i=1

yix
2
i


.

The entries in the matrix are determined from simple formulas using the data. Since this is a linear system,
it is easily solved. The process is quick and easily automated, which is one reason it is very standard.
Matlab’s basic fitting tool uses this process to obtain a d degree polynomial fit whenever the number of
data points is more than d+ 1.
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Drag coefficients

Drag due to air resistance is proportional to the square of the velocity, i.e. d = kv2. In a wind tunnel
experiment the velocity v can be varied by setting the speed of the fan and the drag can be measured
directly (it is the force on the object). In this and every experiment some random noise will occur. The
following sequence of commands replicates the data one might receive from a wind tunnel:

� v = 0:1:60;

� d = .1234*v.^2;

� dn = d + .4*v.* randn(size(v));

� plot(v,dn ,’*’)

The plot should look like a quadratic, but with some noise. Using the tools menu, add a quadratic fit and
enable the “show equations” option. What is the coefficient of x2? How close is it to 0.1234?

Note that whenever you select a polynomial in Matlab with a degree less than n− 1 Matlab will produce
a least squares fit.

You will notice that the quadratic fit includes both a constant and linear term. We know from the physical
situation that these should not be there; they are remnants of noise and the fitting process. Since we know
the curve should be kv2, we can do better by employing that knowledge. For instance, we know that the
graph of d versus v2 should be a straight line. We can produce this easily:

� z = v.^2;

� plot(z,dn ,’*’)

By changing the independent variable from v to z = v2 we produced a plot that looks like a line with noise.
Add a linear fit. What is the linear coefficient? This should be closer to 0.1234 than using a quadratic fit.

The second fit still has a constant term, which we know should not be there. If there was no noise, then
at every data point we would have k = d/v2. We can express this as a linear system z’*k = dn’, which is
badly overdetermined since there are more equations than unknowns. Since there is noise, each point will
give a different estimate for k. In other words, the overdetermined linear system is also inconsistent. When
Matlab encounters such systems, it automatically gives a least squares solution of the matrix problem,
i.e. one that minimizes the sum of the squared errors, which is exactly what we want. To get the least
squares estimate for k, do

� k = z’\dn’

This will produce a number close to .1234.

Note that this is an application where we have physical knowledge. In this situation extrapolation would be
meaningful. For instance we could use the plot to find the predicted drag at 80 mph.
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Exercises

20.1 Find two tables of data in an engineering textbook or engineering website. Plot each (with ’*’ at data
points) and decide if the data is best represented by a polynomial interpolant, spline interpolant, or
least squares fit polynomial. Label the axes and include a title. Turn in the best plot of each. Indicate
the source and meaning of the data.

20.2 The following table contains information from a chemistry experiment in which the concentration of
a product was measured at one minute intervals:

Time 0 1 2 3 4 5 6 7
Concentration 3.033 3.306 3.672 3.929 4.123 4.282 4.399 4.527

Plot this data. Suppose it is known that this chemical reaction should follow the law: c = a −
b exp(−0.2t). Following the example in the notes about the drag coefficients, change one of the
variables so that the law is a linear function. Then plot the new variables and use the linear fit
option to estimate a and b. What will be the eventual concentration? Finally, plot the graph of
a − b exp(−0.2t) on the interval [0,15] (as a solid curve), along with the data from the table (using
’*’).
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Lecture 21

Integration: Left, Right and Trapezoid Rules

The Left and Right endpoint rules

In this section, we wish to approximate a definite integral∫ b

a

f(x) dx ,

where f(x) is a continuous function. In calculus we learned that integrals are (signed) areas and can be
approximated by sums of smaller areas, such as the areas of rectangles. We begin by choosing points {xi}
that subdivide [a, b]:

a = x0 < x1 < . . . < xn−1 < xn = b.

The subintervals [xi−1, xi] determine the width ∆xi of each of the approximating rectangles. For the height,
we learned that we can choose any height of the function f(x∗i ) where x∗i ∈ [xi−1, xi]. The resulting
approximation is ∫ b

a

f(x) dx ≈
n∑
i=1

f(x∗i )∆xi.

To use this to approximate integrals with actual numbers, we need to have a specific x∗i in each interval.
The two simplest (and worst) ways to choose x∗i are as the left-hand point or the right-hand point of each
interval. This gives concrete approximations which we denote by Ln and Rn given by

Ln =

n∑
i=1

f(xi−1)∆xi and Rn =

n∑
i=1

f(xi)∆xi .

function L = myleftsum(x,y)

% produces the left sum from data input.

% Inputs: x -- vector of the x coordinates of the partition

% y -- vector of the corresponding y coordinates

% Output: returns the approximate integral

n = length(x);

L = 0;

for i = 1:n-1

% accumulate height times width

L = L + y(i)*(x(i+1) - x(i));

end

end

82



Introduction to Numerical Methods. . . by Young and Mohlenkamp c©2018 83

-

6

��
��

�
��

�
��
�

-

6

��
��

�
��

�
��
�

Figure 21.1: The left and right sums, Ln and Rn.

Often we can take {xi} to be evenly spaced, with each interval having the same width:

h =
b− a
n

,

where n is the number of subintervals. If this is the case, then Ln and Rn simplify to

Ln = h

n−1∑
i=0

f(xi) and (21.1)

Rn = h

n∑
i=1

f(xi). (21.2)

The foolishness of choosing left or right endpoints is illustrated in Figure 21.1. As you can see, for a very
simple function like f(x) = 1 + .5x, each rectangle of Ln is too short, while each rectangle of Rn is too tall.
This will hold for any increasing function. For decreasing functions Ln will always be too large while Rn
will always be too small.

The Trapezoid rule

Knowing that the errors of Ln and Rn are of opposite sign, a very reasonable way to get a better approxi-
mation is to take an average of the two. We will call the new approximation Tn:

Tn =
Ln +Rn

2
.

This method also has a straight-forward geometric interpretation. On each subrectangle we are using

Ai =
f(xi−1) + f(xi)

2
∆xi ,

which is exactly the area of the trapezoid with sides f(xi−1) and f(xi). We thus call the method the trapezoid
method. See Figure 21.2. We can rewrite Tn as
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Figure 21.2: The trapezoid rule, Tn.

Tn =

n∑
i=1

f(xi−1) + f(xi)

2
∆xi.

In the evenly spaced case, we can write this as

Tn =
h

2

(
f(x0) + 2f(x1) + . . .+ 2f(xn−1) + f(xn)

)
. (21.3)

Caution: The convention used here is to begin numbering the points at 0, i.e. x0 = a; this allows n to be the
number of subintervals and the index of the last point xn. However, Matlab’s indexing convention begins
at 1. Thus, when programming in Matlab, the first entry in x will be x0, i.e. x(1)= x0 and x(n+1)= xn.

If we are given data about the function, rather than a formula for the function, often the data are not evenly
spaced. The following function program could then be used.

function T = mytrap(x,y)

% Calculates the Trapezoid rule approximation of the integral from data

% Inputs: x -- vector of the x coordinates of the partitian

% y -- vector of the corresponding y coordinates

% Output: returns the approximate integral

n = length(x);

T = 0;

for i = 1:n-1

% accumulate twice the signed area of the trapezoids

T = T + (y(i) + y(i+1)) * (x(i+1) - x(i));

end

T = T/2; % correct for the missing 1/2

end
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Using the Trapezoid rule for areas in the plane

In multi-variable calculus you were supposed to learn that you can calculate the area of a region R in the
plane by calculating the line integral

A = −
∮
C

y dx , (21.4)

where C is the counter-clockwise curve around the boundary of the region. We can represent such a curve
by consecutive points on it, i.e. x̄ = (x0, x1, x2, . . . , xn−1, xn), and ȳ = (y0, y1, y2, . . . , yn−1, yn). Since we
are assuming the curve ends where it begins, we require (xn, yn) = (x0, y0). Applying the trapezoid method
to the integral (21.4) gives

A = −
n∑
i=1

yi−1 + yi
2

(xi − xi−1) .

This formula then is the basis for calculating areas when coordinates of boundary points are known, but not
necessarily formulas for the boundaries such as in a land survey.

In the following script, we can use this method to approximate the area of a unit circle using n points on
the circle:

% Calculates pi using a trapezoid approximation of the unit circle.

format long

n = 10; % evaluate points on the circle

t = linspace (0,2*pi,n+1);

x = cos(t);

y = sin(t);

plot(x,y)

A = 0 % accumulate (twice) the trapezoid area

for i = 1:n

A = A - (y(i)+y(i+1))*(x(i+1)-x(i));

end

A = A/2 % correct for the missing 1/2

Vector Operations using Slicing and Summing

In the programs above we used loops to explicitly accumulate sums. For example, in mytrap we had

T = 0;

for i = 1:n-1

T = T + .5*(y(i)+y(i+1))*(x(i+1) - x(i));

end

The alternative is to use vector operations by taking slices out of the vectors and using the sum function.
We can replace the above code by

T = .5*sum( (y(1:n-1)+y(2:n)) .* (x(2:n)-x(1:n-1)) );

Generally, explicit loops are easier to understand but vector operations are more efficient and compact.
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Exercises

21.1 For the integral
∫ 2

1

√
x dx calculate L4, R4, and T4 with even spacing (by hand, but use a calculator

and a lot of digits) using formulas (21.1), (21.2) and (21.3). Find the percentage error of these
approximations, using the exact value.

21.2 Write a well-commented Matlab function program myints whose inputs are f , a, b and n and whose
outputs are L, R and T , the left, right and trapezoid integral approximations for f on [a, b] with n
subintervals. To make it efficient,

• take advantage of the fact that ∆xi is constant,

• use x = linspace(a,b,n+1) to make the x values,

• use y = f(x) to make the y values,

• use slice and sum to add the 2nd to nth y entries once,

• and then add on the missing terms to obtain the left, right and trapezoid approximations.

Change to format long and apply your program to the integral
∫ 2

1

√
x dx. Compare with the results of

the previous exercise. Also find L100, R100 and T100 and the percentage errors of these approximations.

Turn in the program and a brief summary of the results.



Lecture 22

Integration: Midpoint and Simpson’s Rules

Midpoint rule

If we use the endpoints of the subintervals to approximate the integral, we run the risk that the values at the
endpoints do not accurately represent the average value of the function on the subinterval. A point which is
much more likely to be close to the average would be the midpoint of each subinterval. Using the midpoint
in the sum is called the midpoint rule. On the i-th interval [xi−1, xi] we will call the midpoint x̄i, i.e.

x̄i =
xi−1 + xi

2
.

If ∆xi = xi − xi−1 is the length of each interval, then using midpoints to approximate the integral would
give the formula

Mn =

n∑
i=1

f(x̄i)∆xi .

For even spacing, ∆xi = h = (b− a)/n, and the formula is

Mn = h

n∑
i=1

f(x̄i) = h (ŷ1 + ŷ2 + . . .+ ŷn), (22.1)

where we define ŷi = f(x̄i).

While the midpoint method is obviously better than Ln or Rn, it is not obvious that it is actually better
than the trapezoid method Tn, but it is.

Simpson’s rule

Consider Figure 22.1. If f is not linear on a subinterval, then it can be seen that the errors for the midpoint
and trapezoid rules behave in a very predictable way, they have opposite sign. For example, if the function
is concave up then Tn will be too high, while Mn will be too low. Thus it makes sense that a better estimate
would be to average Tn and Mn. However, in this case we can do better than a simple average. The error
will be minimized if we use a weighted average. To find the proper weight we take advantage of the fact that
for a quadratic function the errors EMn and ETn are exactly related by

|EMn| =
1

2
|ETn| .

Thus we take the following weighted average of the two, which is called Simpson’s rule:

S2n =
2

3
Mn +

1

3
Tn .
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Figure 22.1: Comparing the trapezoid and midpoint method on a single subinterval. The function
is concave up, in which case Tn is too high, while Mn is too low.

If we use this weighting on a quadratic function the two errors will exactly cancel.

Notice that we write the subscript as 2n. That is because we usually think of 2n subintervals in the
approximation; the n subintervals of the trapezoid are further subdivided by the midpoints. We can then
number all the points using integers. If we number them this way we notice that the number of subintervals
must be an even number.

The formula for Simpson’s rule if the subintervals are evenly spaced is the following (with n intervals, where
n is even):

Sn =
h

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + . . .+ 2f(xn−2) + 4f(xn−1) + f(xn)) .

Note that if we are presented with data {xi, yi} where the xi points are evenly spaced with xi+1 − xi = ∆x,
it is easy to apply Simpson’s method:

Sn =
h

3
(y0 + 4y1 + 2y2 + 4y3 + . . .+ 2yn−2 + 4yn−1 + yn) . (22.2)

Notice the pattern of the coefficients. The following program will produce these coefficients for n intervals,
if n is an even number. Try it for n = 6, 7, 100.

function w = mysimpweights(n)

% Computes the weights for Simpson ’s rule

% Input: n -- the number of intervals , must be even

% Output: w -- a (column) vector with the weights , length n+1

if rem(n,2) ~= 0

error(’n must be even for Simpsons rule’)

end

w = 2*ones(n+1 ,1); % column vector , starts all 2’s

w(1) = 1; w(n+1) = 1; % set ends to 1’s

w(2:2:n)=4; % set even # entries to 4.

end
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Simpson’s rule is incredibly accurate. We will consider just how accurate in the next section. The one
drawback is that the points used must either be evenly spaced, or at least the odd number points must
lie exactly at the midpoint between the even numbered points. In applications where you can choose the
spacing, this is not a problem. In applications such as experimental or simulated data, you might not have
control over the spacing and then you cannot use Simpson’s rule.

Error bounds

The trapezoid, midpoint, and Simpson’s rules are all approximations. As with any approximation, before you
can safely use it, you must know how good (or bad) the approximation might be. For these methods there
are formulas that give upper bounds on the error. In other words, the worst case errors for the methods.
These bounds are given by the following statements:

• Suppose f ′′ is continuous on [a,b]. Let K2 = maxx∈[a,b] |f ′′(x)|. Then the errors ETn and EMn of the

Trapezoid and Midpoint rules, respectively, applied to
∫ b
a
f dx satisfy

|ETn| ≤ K2
b− a

12
h2 and

|EMn| ≤ K2
b− a

24
h2 .

• Suppose f (4) is continuous on [a,b]. Let K4 = maxx∈[a,b] |f (4)(x)|. Then the error ESn of Simpson’s

rule applied to
∫ b
a
f dx satisfies

|ESn| ≤ K4
b− a
180

h4.

In practice K2 and K4 are themselves approximated from the values of f at the evaluation points.

The most important thing in these error bounds is the dependence on h. To emphasize this dependence,
we sometimes use the order notation O( ). The trapezoid and midpoint method errors are O(h2), so the
methods have order 2. The Simpson’s rule error is O(h4), so it has order 4. If h is just moderately small,
then there is a huge advantage with Simpson’s method.

In Matlab there is a built-in command for definite integrals: integral(f,a,b) where the f is a function
and a and b are the endpoints. The command uses “adaptive Simpson quadrature”, a form of Simpson’s
rule that checks its own accuracy and adjusts the grid size where needed. Here is an example of its usage:

� f = @(x) x.^(1/3).* sin(x.^3)

� I = integral(f,0,1)

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/
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Exercises

22.1 Using formulas (22.1) and (22.2), for the integral
∫ 2

1

√
x dx calculate M4 and S4 (by hand, but use

a calculator and a lot of digits). Find the percentage error of these approximations, using the exact
value. Compare with exercise 21.1.

22.2 Write a well-commented Matlab function program mymidpoint that calculates the midpoint rule
approximation for

∫
f on the interval [a, b] with n subintervals. The inputs should be f , a, b and n.

Use your program on the integral
∫ 2

1

√
x dx to obtain M4 and M100. Compare these with exercise 22.1

and the true value of the integral.

22.3 Write a well-commented Matlab function program mysimpson that calculates the Simpson’s rule ap-
proximation for

∫
f on the interval [a, b] with n subintervals. It should call the program mysimpweights

to produce the coefficients. Use your program on the integral
∫ 2

1

√
x dx to obtain S4 and S100. Compare

these with exercise 22.1, exercise 22.2, and the true value of the integral.



Lecture 23

Plotting Functions of Two Variables

Functions on Rectangular Grids

Suppose you wish to plot a function f(x, y) on the rectangle a ≤ x ≤ b and c ≤ y ≤ d. The graph of a
function of two variables is of course a three dimensional object. Visualizing the graph is often very useful.

For example, suppose you have a formula

f(x, y) = x sin(xy)

and you are interested in the function on the region 0 ≤ x ≤ 5, π ≤ y ≤ 2π. A way to plot this function in
Matlab would be the following sequence of commands:

� f = @(x,y) x.*sin(x.*y)

� [X,Y] = meshgrid (0:.1:5 ,pi:.01* pi:2*pi);

� Z = f(X,Y)

� mesh(X,Y,Z)

This will produce a 3-D plot that you can rotate by clicking on the rotate icon and then dragging with the
mouse. Instead of the command mesh, you could use the command

� surf(X,Y,Z)

The key command in this sequence is [X Y] = meshgrid(a:h:b,c:k:d), which produces matrices of x and
y values in X and Y. Enter:

� size(X)

� size(Y)

� size(Z)

to see that each of these variables is a 101× 51 matrix. To see the first few entries of X enter

� X(1:6 ,1:6)

and to see the first few values of Y type

� Y(1:6 ,1:6)

You should observe that the x values in X begin at 0 on the left column and increase from left to right. The y
values on the other have start at π at the top and increase from top to bottom. Note that this arrangement
is flipped from the usual arrangment in the x-y plane.
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In the command [X Y] = meshgrid(a:h:b,c:k:d), h is the increment in the x direction and k is the
increment in the y direction. Often we will calculate

h =
b− a
m

and k =
d− c
n

,

where m is the number of intervals in the x direction and n is the number of intervals in the y direction. To
obtain a good plot it is best if m and n can be set between 10 and 100.

For another example of how meshgrid works, try the following and look at the output in X and Y.

� [X,Y] = meshgrid (0:.5:4 ,1:.2:2);

Scattered Data and Triangulation

Often we are interested in objects whose bases are not rectangular. For instance, data does not usually come
arranged in a nice rectangular grid; rather, measurements are taken where convenient.

In Matlab we can produce triangles for a region by recording the coordinates of the vertices and recording
which vertices belong to each triangle. The following script program produces such a set of triangles:

% mytriangles

% Program to produce a triangulation.

% V contains vertices , which are (x,y) pairs

V = [ 1/2 1/2 ; 1 1 ; 3/2 1/2 ; .5 1.5 ; 0 0

1 0 ; 2 0 ; 2 1 ; 1.5 1.5 ; 1 2

0 2 ; 0 1]

% x, y are row vectors containing coordinates of vertices

x = V(:,1)’;

y = V(:,2)’;

% Assign the triangles

T = delaunay(x,y)

You can plot the triangles using

� trimesh(T,x,y)

You can also prescribe values (heights) at each vertex directly (say from a survey):

� z1 = [ 2 3 2.5 2 1 1 .5 1.5 1.6 1.7 .9 .5 ];

or using a function:

� f = @(x,y) abs(sin(x.*y)).^(3/2);

� z2 = f(x,y);

The resulting profiles can be plotted:

� trimesh(T,x,y,z1)

� trisurf(T,x,y,z2)
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Each row of the matrix T corresponds to a triangle, so T(i,:) gives triangle number i. The three corners
of triangle number i are at indices T(i,1), T(i,2), and T(i,3). So for example to get the y-coordinate of
the second point of triangle number 5, enter

� y(T(5 ,2))

To see other examples of regions defined by triangles, download mywedge.m and mywasher.m and run them.
Each of these programs defines vectors x and y of x and y values of vertices and a matrix T. As before T is
a list of sets of three integers. Each triple of integers indicates which vertices to connect in a triangle.

To plot a function, say f(x, y) = x2 − y2 on the washer figure try

� mywasher

� z = x.^2 - y.^2

� trisurf(T,x,y,z)

Note again that this plot can be rotated using the icon and mouse.

Exercises

23.1 Plot the function f(x, y) = xe−x
2−y2 on the rectangle −3 ≤ x ≤ 3, −2 ≤ y ≤ 2 using meshgrid and

mesh. Make an appropriate choice of m and n and if necessary a rotation to produce a good plot.
Calculate the h and k corresponding to your m and n. Turn in your plot and the calculation of h and
k.

23.2 Modeling after mywasher.m, produce

@
@
@

@
@
@

HH
HHHH

Use the axis command to zoom out so the outside edges are clearly visible.

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/
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http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/mywasher.m


Lecture 24

Double Integrals for Rectangles

The center point method

Suppose that we need to find the integral of a function, f(x, y), on a rectangle

R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}.

In calculus you learned to do this by an iterated integral

I =

∫∫
R

f dA =

∫ b

a

∫ d

c

f(x, y) dydx =

∫ d

c

∫ b

a

f(x, y) dxdy.

You also should have learned that the integral is the limit of the Riemann sums of the function as the size
of the subrectangles goes to zero. This means that the Riemann sums are approximations of the integral,
which is precisely what we need for numerical methods.

For a rectangle R, we begin by subdividing into smaller subrectangles {Rij}, in a systematic way. We will
divide [a, b] into m subintervals and [c, d] into n subintervals. Then Rij will be the “intersection” of the i-th
subinterval in [a, b] with the j-th subinterval of [c, d]. In this way the entire rectangle is subdivided into mn
subrectangles, numbered as in Figure 24.1.

A Riemann sum using this subdivision would have the form

S =

m,n∑
i,j=1,1

f(x∗ij)Aij =

n∑
j=1

(
m∑
i=1

f(x∗ij)Aij

)
,

a b
c

d

R11 R21 R31 R41

R12

R13

R14

R15

Figure 24.1: Subdivision of the rectangle R = [a, b]× [c, d] into subrectangles Rij .
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where Aij = ∆xi∆yj is the area of Rij , and x∗ij is a point in Rij . The theory of integrals tells us that if f is
continuous, then this sum will converge to the same number, no matter how we choose x∗ij . For instance, we
could choose x∗ij to be the point in the lower left corner of Rij and the sum would still converge as the size
of the subrectangles goes to zero. However, in practice we wish to choose x∗ij in such a way to make S as
accurate as possible even when the subrectangles are not very small. The obvious choice for the best point
in Rij would be the center point. The center point is most likely of all points to have a value of f close to
the average value of f . If we denote the center points by cij , then the sum becomes

Cmn =

m,n∑
i,j=1,1

f(cij)Aij .

Here

cij =

(
xi−1 + xi

2
,
yi−1 + yi

2

)
.

Note that if the subdivision is evenly spaced then ∆x ≡ (b− a)/m and ∆y ≡ (d− c)/n, and so in that case

Cmn =
(b− a)(d− c)

mn

m,n∑
i,j=1,1

f(cij).

The four corners method

Another good idea would be to take the value of f not only at one point, but as the average of the values at
several points. An obvious choice would be to evaluate f at all four corners of each Rij then average those.
If we note that the lower left corner is (xi, yj), the upper left is (xi, yj+1), the lower right is (xi+1, yi) and
the upper right is (xi+1, yi+1), then the corresponding sum will be

Fmn =

m,n∑
i,j=1,1

1

4
(f(xi, yj) + f(xi, yj+1) + f(xi+1, yi) + f(xi+1, yj+1))Aij ,

which we will call the four-corners method. If the subrectangles are evenly spaced, then we can simplify this
expression. Notice that f(xi, yj) gets counted multiple times depending on where (xi, yj) is located. For
instance if (xi, yj) is in the interior of R then it is the corner of 4 subrectangles. Thus the sum becomes

Fmn =
A

4

 ∑
corners

f(xi, yj) + 2
∑
edges

f(xi, yj) + 4
∑

interior

f(xi, yj)

 ,

where A = ∆x∆y is the area of the subrectangles. We can think of this as a weighted average of the values
of f at the grid points (xi, yj). The weights used are represented in the matrix

W =



1 2 2 2 · · · 2 2 1
2 4 4 4 · · · 4 4 2
2 4 4 4 · · · 4 4 2
...

...
...

... · · ·
...

...
...

2 4 4 4 · · · 4 4 2
1 2 2 2 · · · 2 2 1


. (24.1)

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/
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We could implement the four-corner method by forming a matrix (fij) of f values at the grid points, then
doing entry-wise multiplication of the matrix with the weight matrix. Then the integral would be obtained
by summing all the entries of the resulting matrix and multiplying that by A/4. The formula would be

Fmn =
(b− a)(d− c)

4mn

m+1,n+1∑
i,j=1,1

Wijf(xi, yj).

Notice that the four-corners method coincides with applying the trapezoid rule in each direction. Thus it is
in fact a double trapezoid rule.

The double Simpson method

The next improvement one might make would be to take an average of the center point sum Cmn and the
four corners sum Fmn. However, a more standard way to obtain a more accurate method is the Simpson
double integral. It is obtained by applying Simpson’s rule for single integrals to the iterated double integral.
The resulting method requires that both m and n be even numbers and the grid be evenly spaced. If this is
the case we sum up the values f(xi, yj) with weights represented in the matrix

W =



1 4 2 4 · · · 2 4 1
4 16 8 16 · · · 8 16 4
2 8 4 8 · · · 4 8 2
4 16 8 16 · · · 8 16 4
...

...
...

... · · ·
...

...
...

2 8 4 8 · · · 4 8 2
4 16 8 16 · · · 8 16 4
1 4 2 4 · · · 2 4 1


. (24.2)

The sum of the weighted values is multiplied by A/9 and the formula is

Smn =
(b− a)(d− c)

9mn

m+1,n+1∑
i,j=1,1

Wijf(xi, yj).

Matlab has a built in command for double integrals on rectangles: integral2(f,a,b,c,d). Here is an
example:

� f = @(x,y) sin(x.*y)./ sqrt(x+y)

� I = integral2(f,0.5 ,1 ,0.5 ,2)

Below is a Matlab function which will produce the matrix of weights needed for Simpson’s rule for double
integrals. It uses the function mysimpweights from Lecture 22.
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function W = mydblsimpweights(m,n)

% Return the matrix of weights for Simpson ’s rule for double integrals.

% Inputs: m -- number of intervals in the row direction.

% must be even.

% n -- number of intervals in the column direction.

% must be even.

% Output: W -- a (m+1)x(n+1) matrix of the weights

if rem(m ,2)~=0 || rem(n ,2)~=0

error(’m and n must be even for Simpsons rule’)

end

% get 1-dimensional weights

u = mysimpweights(m);

v = mysimpweights(n);

W = u*v’;

end

Exercises

24.1 Download the program mylowerleft.m. Modify it to make a new program mycenter that does the
center point method. Implement the change by changing the “meshgrid” to put the grid points at the
centers of the subrectangles. Look at the mesh plot produced to make sure the program is putting the
grid where you want it. Use both programs to approximate the integral∫ 2

0

∫ 5

1

√
xy dy dx,

using (m,n) = (10, 18). Evaluate this integral exactly (by hand) and compare the accuracy of the two
programs.

24.2 Write a well-commented Matlab function program mydblsimp that computes the Simpson’s rule
approximation. Let it call the program mydblsimpweights to make the weight matrix (24.2). Check
the program on the integral in the previous problem using (m,n) = (10, 18) and (m,n) = (100, 100).

24.3 Using mysimpweights and mydblsimpweights as models make well-commented Matlab function
programs mytrapweights and mydbltrapweights that will produce the weights for the trapezoid rule
and the weight matrix for the four corners (double trapezoid) method (24.1). Turn in the programs
and the resulting weights for a 5× 6 grid.

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/
http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/mylowerleft.m


Lecture 25

Double Integrals for Non-rectangles

In the previous lecture we considered only integrals over rectangular regions. In practice, regions of interest
are rarely rectangles and so in this lecture we consider two strategies for evaluating integrals over other
regions.

Redefining the function

One strategy is to redefine the function so that it is zero outside the region of interest, then integrate over
a rectangle that includes the region.

For example, suppose we need to approximate the value of

I =

∫∫
T

sin3(xy) dx dy

where T is the triangle with corners at (0, 0), (1, 0) and (0, 2). Then we could let R be the rectangle
[0, 1] × [0, 2] which contains the triangle T . Notice that the hypotenuse of the triangle has the equation
2x+ y = 2. Then make f(x) = sin3(xy) if 2x+ y ≤ 2 and f(x) = 0 if 2x+ y > 2. In Matlab we can make
this function with the command

� f = @(x,y) sin(x.*y).^3.*(2*x + y <= 2)

In this command <= is a logical command. The term in parentheses is then a logical statement and is given
the value 1 if the statement is true and 0 if it is false. We can then integrate the modified f on [0, 1]× [0, 2]
using the command

� I = integral2(f,0,1,0,2)

As another example, suppose we need to integrate 10000 + x2 exp(xy) inside the circle of radius 2 centered
at (1, 2). The equation for this circle is (x − 1)2 + (y − 2)2 = 4. Note that the inside of the circle is
(x− 1)2 + (y − 2)2 ≤ 4 and that the circle is contained in the rectangle [−1, 3]× [0, 4]. Thus we can create
the right function, plot it, and integrate it by

� f = @(x,y) (10+(x -1).*(y -2)).*((x -1).^2 + (y -2).^2 <= 4)

� [X Y] = meshgrid ( -4:0.01:4 , -3:0.01:5);

� Z = f(X,Y);

� mesh(X,Y,Z)

� I = integral2(f,-1,3,0,4)
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Integration Based on Triangles

The second approach to integrating over non-rectangular regions, is based on subdividing the region into
triangles. Such a subdivision is called a triangulation. On regions where the boundary consists of line
segments, this can be done exactly. Even on regions where the boundary contains curves, this can be done
approximately. This is a very important idea for several reasons, the most important of which is that the
finite elements method is based on it. Another reason this is important is that often the values of f are
not given by a formula, but from data. For example, suppose you are surveying on a construction site and
you want to know how much fill will be needed to bring the level up to the plan. You would proceed by
taking elevations at numerous points across the site. However, if the site is irregularly shaped or if there are
obstacles on the site, then you cannot make these measurements on an exact rectangular grid. In this case,
you can use triangles by connecting your points with triangles. Many software packages will even choose the
triangles for you (Matlab will do it using the command delaunay).

The basic idea of integrals based on triangles is exactly the same as that for rectangles; the integral is
approximated by a sum where each term is a value times an area

I ≈
n∑
i=1

f(x∗i )Ai ,

where n is the number of triangles, Ai is the area of the triangle and x∗ a point in the triangle. However,
rather than considering the value of f at just one point people often consider an average of values at several
points. The most convenient of these is of course the corner points. We can represent this sum by

Tn =

n∑
i=1

f̄iAi ,

where f̄ is the average of f at the corners.

If the triangle has vertices (x1, y1), (x2, y2) and (x3, y3), the formula for area is

A =
1

2

∣∣∣∣∣∣det

 x1 x2 x3
y1 y2 y3
1 1 1

∣∣∣∣∣∣ . (25.1)

The function mythreecorners below implements this method.

function I = mythreecorners(f,V,T)

% Integrates a function based on a triangulation , using three corners

% Inputs: f -- the function to integrate

% V -- the vertices.

% Each row has the x and y coordinates of a vertex

% T -- the triangulation.

% Each row gives the indices of the three corners

% Output: the approximate integral

x = V(: ,1); % extract x and y coordinates of all nodes

y = V(: ,2);

I=0; % start accumulator at 0

p = size(T,1); % get number of triangles

for i = 1:p % loop through the triangles

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/
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x1 = x(T(i,1)); % find coordinates of the three corners

x2 = x(T(i,2));

x3 = x(T(i,3));

y1 = y(T(i,1));

y2 = y(T(i,2));

y3 = y(T(i,3));

A = .5*abs(det([x1, x2, x3; y1, y2, y3; 1, 1, 1])); %find area

z1 = f(x1,y1); % find values at the three corners

z2 = f(x2,y2);

z3 = f(x3,y3);

zavg = (z1 + z2 + z3)/3; % average the values

I = I + zavg*A; % accumulate integral

end

end

Another idea would be to use the center point (centroid) of each triangle. If the triangle has vertices (x1, y1),
(x2, y2) and (x3, y3), then the centroid is given by the simple formulas

x̄ =
x1 + x2 + x3

3
and ȳ =

y1 + y2 + y3
3

. (25.2)

Exercises

25.1 Download the program mywasher.m. Plot f(x, y) = x+y
x2+y2 on the region produced by mywasher.m and

Use the program mythreecorners to calculate the integral of f on the washer. Is this accurate? How
do you know?

25.2 Download the program mywedge.m. Plot g(x, y) = sin(x) +
√
y on the region produced by mywedge.m

use mythreecorners to calculate the integral of g on this wedge.

25.3 Modify the program mythreecorners.m to a new program mycenters.m that does the centerpoint
method for triangles. Run the program on the region produced by mywasher.m with the function
f(x, y) = x+y

x2+y2 and on the region produced by mywedge.m with the function g(x, y) = sin(x) +
√
y.

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/mywasher.m
http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/mywasher.m
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Lecture 26

Gaussian Quadrature*

Exercises

26.1

26.2
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Lecture 27

Numerical Differentiation

Approximating derivatives from data

Suppose that a variable y depends on another variable x, i.e. y = f(x), but we only know the values of f at
a finite set of points, e.g., as data from an experiment or a simulation:

(x1, y1), (x2, y2), . . . , (xn, yn).

Suppose then that we need information about the derivative of f(x). One obvious idea would be to approx-
imate f ′(xi) by the Forward Difference

f ′(xi) = y′i ≈
yi+1 − yi
xi+1 − xi

.

This formula follows directly from the definition of the derivative in calculus. An alternative would be to
use a Backward Difference

f ′(xi) ≈
yi − yi−1
xi − xi−1

.

Since the errors for the forward difference and backward difference tend to have opposite signs, it would
seem likely that averaging the two methods would give a better result than either alone. If the points are
evenly spaced, i.e. xi+1 − xi = xi − xi−1 = h, then averaging the forward and backward differences leads to
a symmetric expression called the Central Difference

f ′(xi) = y′i ≈
yi+1 − yi−1

2h
.

Errors of approximation

We can use Taylor polynomials to derive the accuracy of the forward, backward and central difference
formulas. For example the usual form of the Taylor polynomial with remainder (sometimes called Taylor’s
Theorem) is

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(c) ,

where c is some (unknown) number between x and x+h. Letting x = xi, x+h = xi+1 and solving for f ′(xi)
leads to

f ′(xi) =
f(xi+1)− f(xi)

h
− h

2
f ′′(c).

Notice that the quotient in this equation is exactly the forward difference formula. Thus the error of the
forward difference is −(h/2)f ′′(c) which means it is O(h). Replacing h in the above calculation by −h gives
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Figure 27.1: The three difference approximations of y′i.

the error for the backward difference formula; it is also O(h). For the central difference, the error can be
found from the third degree Taylor polynomials with remainder

f(xi+1) = f(xi + h) = f(xi) + hf ′(xi) +
h2

2
f ′′(xi) +

h3

3!
f ′′′(c1) and

f(xi−1) = f(xi − h) = f(xi)− hf ′(xi) +
h2

2
f ′′(xi)−

h3

3!
f ′′′(c2) ,

where xi ≤ c1 ≤ xi+1 and xi−1 ≤ c2 ≤ xi. Subtracting these two equations and solving for f ′(xi) leads to

f ′(xi) =
f(xi+1)− f(xi−1)

2h
− h2

3!

f ′′′(c1) + f ′′′(c2)

2
.

This shows that the error for the central difference formula is O(h2). Thus, central differences are significantly
better and so: It is best to use central differences whenever possible.

There are also central difference formulas for higher order derivatives. These all have error of order O(h2):

f ′′(xi) = y′′i ≈
yi+1 − 2yi + yi−1

h2
,

f ′′′(xi) = y′′′i ≈
1

2h3
[yi+2 − 2yi+1 + 2yi−1 − yi−2] , and

f (4)(xi) = y
(4)
i ≈ 1

h4
[yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2] .

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/
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Partial Derivatives

Suppose u = u(x, y) is a function of two variables that we only know at grid points (xi, yj). We will use the
notation

ui,j = u(xi, yj)

frequently throughout the rest of the lectures. We can suppose that the grid points are evenly spaced, with
an increment of h in the x direction and k in the y direction. The central difference formulas for the partial
derivatives would be

ux(xi, yj) ≈
1

2h
(ui+1,j − ui−1,j) and

uy(xi, yj) ≈
1

2k
(ui,j+1 − ui,j−1) .

The second partial derivatives are

uxx(xi, yj) ≈
1

h2
(ui+1,j − 2ui,j + ui−1,j) and

uyy(xi, yj) ≈
1

k2
(ui,j+1 − 2ui,j + ui,j−1) ,

and the mixed partial derivative is

uxy(xi, yj) ≈
1

4hk
(ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1) .

Caution: Notice that we have indexed uij so that as a matrix each row represents the values of u at a
certain xi and each column contains values at yj . The arrangement in the matrix does not coincide with the
usual orientation of the xy-plane.

Let’s consider an example. Let the values of u at (xi, yj) be recorded in the matrix

(uij) =


5.1 6.5 7.5 8.1 8.4
5.5 6.8 7.8 8.3 8.9
5.5 6.9 9.0 8.4 9.1
5.4 9.6 9.1 8.6 9.4

 (27.1)

Assume the indices begin at 1, i is the index for rows and j the index for columns. Suppose that h = .5 and
k = .2. Then uy(x2, y4) would be approximated by the central difference

uy(x2, y4) ≈ u2,5 − u2,3
2k

≈ 8.9− 7.8

2 · 0.2
= 2.75.

The partial derivative uxy(x2, y4) is approximated by

uxy(x2, y4) ≈ u3,5 − u3,3 − u1,5 + u1,3
4hk

≈ 9.1− 9.0− 8.4 + 7.5

4 · .5 · .2
= −2.
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Exercises

27.1 Suppose you are given the data in the following table.
t 0 .5 1.0 1.5 2.0
y 0 .19 .26 .29 .31

a. Give the forward, backward and central difference approximations of f ′(1).
b. Give the central difference approximations for f ′′(1), f ′′′(1) and f (4)(1).

27.2 Suppose values of u(x, y) at points (xi, yj) are given in the matrix (27.1). Suppose that h = .1 and
k = .5. Approximate the following derivatives by central differences:
a. ux(x3, y4)
b. uxx(x4, y2)
c. uyy(x3, y4)
d. uxy(x3, y3)

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/


Lecture 28

The Main Sources of Error

Truncation Error

Truncation error is defined as the error caused directly by an approximation method. For instance, all
numerical integration methods are approximations and so there is error, even if the calculations are performed
exactly. Numerical differentiation also has a truncation error, as will the differential equations methods we
will study in Part IV, which are based on numerical differentiation formulas. There are two ways to minimize
truncation error: (1) use a higher order method, and (2) use a finer grid so that points are closer together.
Unless the grid is very small, truncation errors are usually much larger than roundoff errors. The obvious
tradeoff is that a smaller grid requires more calculations, which in turn produces more roundoff errors and
requires more running time.

Roundoff Error

Roundoff error always occurs when a finite number of digits are recorded after an operation. Fortunately,
this error is extremely small. The standard measure of how small is called machine epsilon. It is defined
as the smallest number that can be added to 1 to produce another number on the machine, i.e. if a smaller
number is added the result will be rounded down to 1. In IEEE standard double precision (used by Matlab
and most serious software), machine epsilon is 2−52 or about 2.2× 10−16. A different, but equivalent, way of
thinking about this is that the machine records 52 floating binary digits or about 15 floating decimal digits.
Thus there are never more than 15 significant digits in any calculation. This of course is more than adequate
for any application. However, there are ways in which this very small error can cause problems.

To see an unexpected occurence of round-off try

� (2^52+1) - 2^52

� (2^53+1) - 2^53

Loss of Precision (also called Loss of Significance)

Suppose we had some way to compute π that effectively did the calculation (e · 109 + π)− e · 108. Rounding
everything to 16 digits, we are computing

(2718281828.459045 + 3.141592653589793)− 2718281828.459045 .

The addition is peformed first and the result rounded to 16 digits, giving

2718281831.600637− 2718281828.459045 .
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Although roundoff caused some error, it is about a factor of 10−16 smaller than the numbers shown. In other
words, all but perhaps the last digit shown is correct. Next the subtraction is performed, giving

0000000003.141592 .

The leading zeros are not significant, so we lost 9 significant digits and have only 7 left. This type of error,
where common leading significant digits cancel, is loss-of-precision (also called loss-of-significance) error.
Computers will not display these leading zeros. Instead, the subtraction above yielded

3.141592025756836 .

Although it is displayed with 16 digits, only the first 7 are correct.

Although this seems like a silly example, this type of loss of precision can happen by accident, with catas-
trophic results, if you are not careful. For example in f ′(x) ≈ (f(x + h) − f(x))/h you will lose precision
when h gets too small. Try

� format long

� format compact

� f = @(x) x^2

� for i = 1:30

� h = 10^(-i)

� df = (f(1+h)-f(1))/h

� relerr = (2-df)/2

� end

At first the relative error decreases since truncation error is reduced. Then loss of precision takes over and
the relative error increases to 1.

Bad Conditioning

We encountered bad conditioning in Part II, when we talked about solving linear systems. Bad conditioning
means that the problem is unstable in the sense that small input errors can produce large output errors. This
can be a problem in a couple of ways. First, the measurements used to get the inputs cannot be completely
accurate. Second, the computations along the way have roundoff errors. Errors in the computations near
the beginning especially can be magnified by a factor close to the condition number of the matrix. Thus
what was a very small problem with roundoff can become a very big problem.

It turns out that matrix equations are not the only place where condition numbers occur. In any problem
one can define the condition number as the maximum ratio of the relative errors in the output versus input,
i.e.

condition # of a problem = max

(
Relative error of output

Relative error of inputs

)
.

An easy example is solving a simple equation

f(x) = 0.

Suppose that f ′ is close to zero at the solution x∗. Then a very small change in f (caused perhaps by an
inaccurate measurement of some of the coefficients in f) can cause a large change in x∗. It can be shown
that the condition number of this problem is 1/f ′(x∗).

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/
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Exercises

28.1 Identify the (main) source of error in each case and propose a way to reduce this error if possible.

(a) If we do (
√

3)2 we should get 3, but if we check

� mythree = (sqrt (3))^2

� mythree -3

we find the error is ans = -4.4409e-16.

(b) Since it is a quarter of a circle of radius 2, we should have
∫ 2

0

√
4− x2dx = 1

4π22 = π. We try to
use mytrap from Lecture 21 and do

� x = 0:.2:2;

� y = sqrt(4-x.^2);

� mypi = mytrap(x,y)

� mypi -pi

and find the error is ans = -0.0371.

28.2 1 The function f(x) = (x−2)9 could be evaluated as written, or first expanded as f(x) = x9−18x8+· · ·
and then evaluated. To find the expanded version, type

� syms x

� expand ((x -2)^9)

� clear

To evaluate it without expansion, type

� f1 = @(x) (x -2).^9

� x = 1.92:.001:2.08;

� y1 = f1(x);

� plot(x,y1,’blue’)

To do it with expansion, convert the symbolic expansion above to an anonymous function f2 and then
type

� y2 = f2(x);

� hold on

� plot(x,y2,’red’)

Carefully study the resulting graphs. Should the graphs be the same? Which is more correct? Matlab
does calculations using approximately 16 decimal places. What is the largest error in the graph, and
how big is it relative to 10−16? Which source of error is causing this problem?

1From Numerical Linear Algebra by L. Trefethen and D. Bau, SIAM, 1997.



Review of Part III

Methods and Formulas

Polynomial Interpolation:

An exact fit to the data.
For n data points it is a n− 1 degree polynomial.
Only good for very few, accurate data points.
The coefficients are found by solving a linear system of equations.

Spline Interpolation:

Fit a simple function between each pair of points.
Joining points by line segments is the most simple spline.
Cubic is by far the most common and important.
Cubic matches derivatives and second derivatives at data points.
Simply supported and clamped ends are available.
Good for more, but accurate points.
The coefficients are found by solving a linear system of equations.

Least Squares:

Makes a “close fit” of a simple function to all the data.
Minimizes the sum of the squares of the errors.
Good for noisy data.
The coefficients are found by solving a linear system of equations.

Interpolation vs. Extrapolation:

Polynomials, Splines and Least Squares are generally used for Interpolation, fitting between the data. Ex-
trapolation, i.e. making fits beyond the data, is much more tricky. To make predictions beyond the data,
you must have knowledge of the underlying process, i.e. what the function should be.
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Numerical Integration:

Left Endpoint:

Ln =

n∑
i=1

f(xi−1)∆xi

Right Endpoint:

Rn =

n∑
i=1

f(xi)∆xi.

Trapezoid Rule:

Tn =

n∑
i=1

f(xi−1) + f(xi)

2
∆xi.

Midpoint Rule:

Mn =

n∑
i=1

f(x̄i)∆xi where x̄i =
xi−1 + xi

2
.

Numerical Integration Rules with Even Spacing:

For even spacing: ∆x = b−a
n where n is the number of subintervals, then:

Ln = ∆x

n−1∑
i=0

yi =
b− a
n

n−1∑
i=0

f(xi),

Rn = ∆x

n∑
i=1

yi =
b− a
n

n∑
i=1

f(xi),

Tn = ∆x
(
y0 + 2y1 + . . .+ 2yn−1 + yn

)
=
b− a
2n

(
f(x0) + 2f(x1) + . . .+ 2f(xn−1) + f(xn)

)
,

Mn = ∆x

n∑
i=1

ȳi =
b− a
n

n∑
i=1

f(x̄i),

Simpson’s rule:

Sn = ∆x
(
y0 + 4y1 + 2y2 + 4y3 + . . .+ 2yn−2 + 4yn−1 + yn

)
=
b− a
3n

(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + . . .+ 2f(xn−2) + 4f(xn−1) + f(xn)) .

Area of a region:

A = −
∮
C

y dx,
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where C is the counter-clockwise curve around the boundary of the region. We can represent such a curve,
by consecutive points on it, i.e. x̄ = (x0, x1, x2, . . . , xn−1, xn), and ȳ = (y0, y1, y2, . . . , yn−1, yn) with
(xn, yn) = (x0, y0). Applying the trapezoid method to the integral (21.4):

A = −
n∑
i=1

yi−1 + yi
2

(xi − xi−1)

Accuracy of integration rules:

Right and Left endpoint are O(∆x)
Trapezoid and Midpoint are O(∆x2)
Simpson is O(∆x4)

Double Integrals on Rectangles:

Centerpoint:

Cmn =

m,n∑
i,j=1,1

f(cij)Aij .

where

cij =

(
xi−1 + xi

2
,
yi−1 + yi

2

)
.

Centerpoint – Evenly spaced:

Cmn = ∆x∆y

m,n∑
i,j=1,1

zij =
(b− a)(d− c)

mn

m,n∑
i,j=1,1

f(cij).

Four corners:

Fmn =

m,n∑
i,j=1,1

1

4
(f(xi, yj) + f(xi, yj+1) + f(xi+1, yi) + f(xi+1, yj+1))Aij ,

Four Corners – Evenly spaced:

Fmn =
A

4

 ∑
corners

f(xi, yj) + 2
∑
edges

f(xi, yj) + 4
∑

interior

f(xi, yj)


=

(b− a)(d− c)
4mn

m,n∑
i,j=1,1

Wijf(xi, yj).

where

W =



1 2 2 2 · · · 2 2 1
2 4 4 4 · · · 4 4 2
2 4 4 4 · · · 4 4 2
...

...
...

... · · ·
...

...
...

2 4 4 4 · · · 4 4 2
1 2 2 2 · · · 2 2 1


.
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Double Simpson:

Smn =
(b− a)(d− c)

9mn

m,n∑
i,j=1,1

Wijf(xi, yj).

where

W =



1 4 2 4 · · · 2 4 1
4 16 8 16 · · · 8 16 4
2 8 4 8 · · · 4 8 2
4 16 8 16 · · · 8 16 4
...

...
...

... · · ·
...

...
...

2 8 4 8 · · · 4 8 2
4 16 8 16 · · · 8 16 4
1 4 2 4 · · · 2 4 1


.

Integration based on triangles:

– Triangulation: Dividing a region up into triangles.
– Triangles are suitable for odd-shaped regions.
– A triangulation is better if the triangles are nearly equilateral.
Three corners:

Tn =

n∑
i=1

f̄iAi

where f̄ is the average of f at the corners of the i-th triangle.
Area of a triangle with corners (x1, y1), (x2, y2), (x3, y3):

A =
1

2

∣∣∣∣∣∣det

 x1 x2 x3
y1 y2 y3
1 1 1

∣∣∣∣∣∣ .
Centerpoint:

C =

n∑
i=1

f(x̄i, ȳi)Ai, with

x̄ =
x1 + x2 + x3

3
and ȳ =

y1 + y2 + y3
3

.

Finite Differences

Forward Difference:

f ′(xi) = y′i ≈
yi+1 − yi
xi+1 − xi

.

Backward Difference:

f ′(xi) ≈
yi − yi−1
xi − xi−1

.

Central Difference:

f ′(xi) = y′i ≈
yi+1 − yi−1

2h
.
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Higher order central differences:

f ′′(xi) = y′′i ≈
yi+1 − 2yi + yi−1

h2
,

f ′′′(xi) = y′′′i ≈
1

2h3
[yi+2 − 2yi+1 + 2yi−1 − yi−2] ,

f (4)(xi) = y
(4)
i ≈ 1

h4
[yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2] .

Partial Derivatives: Denote ui,j = u(xi, yj).

ux(xi, yj) ≈
1

2h
(ui+1,j − ui−1,j) ,

uy(xi, yj) ≈
1

2k
(ui,j+1 − ui,j−1) ,

uxx(xi, yj) ≈
1

h2
(ui+1,j − 2ui,j + ui−1,j) ,

uyy(xi, yj) ≈
1

k2
(ui,j+1 − 2ui,j + ui,j−1) ,

uxy(xi, yj) ≈
1

4hk
(ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1) .

Sources of error:

Truncation – the method is an approximation.
Roundoff – double precision arithmetic uses ≈ 15 significant digits.
Loss of precision – an amplification of roundoff error due to cancellations.
Bad conditioning – the problem is sensitive to input errors.
Error can build up after multiple calculations.

Matlab

Data Interpolation:

Use the plot command plot(x,y,’*’) to plot the data.
Use the Basic Fitting tool to make an interpolation or spline.
If you choose an n − 1 degree polynomial with n data points the result will be the exact polynomial inter-
polation.
If you select a polynomial degree less than n− 1, then Matlab will produce a least squares approximation.

Functions of 2 Variables and Meshgrids:

f = @(x,y) sin(x.*y)/sqrt(x+y) . . . . . . . . . . . . . . . . . . . . . . . make an anonymous function of x and y.
[X Y] = meshgrid(-1:.01:2, 0:.01:3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . make a 2-d grid of points.
Z = f(X,Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . evaluate the function at all points on the grid.
mesh(X,Y,Z) or surf(X,Y,Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . plot the function on the grid.
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Integration:

integral(f,a,b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Numerical integral of f(x) on [a, b].
integral2(f,a,b,c,d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Integral of f(x, y) on [a, b]× [c, d].
Example:

� f = @(x,y) sin(x.*y)/sqrt(x+y)

� I = integral2(f,0,1,0,2)

Matlab uses an advanced form of Simpson’s method.

Integration over non-rectangles:

Redefine the function to be zero outside the region. For example:

� f = @(x,y) sin(x.*y).^3.*(2*x + y <= 2)

� I = integral2(f,0,1,0,2)

Integrates f(x, y) = sin3(xy) on the triangle with corners (0, 0), (0, 2), and (1, 0).

Triangles:
Matlab stores triangulations as a matrix of vertices V and triangles T.
T = delaunay(V) (or delaunay(x,y)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Produces triangles from vertices.
trimesh(T,x,y)

trimesh(T,x,y,z)

trisurf(T,x,y)

trisurf(T,x,y,z)

Logical expressions

(2*x + y <= 2), (x.^2+y.^2<=1) are examples of logical expressions.
If a logical expression is true it is given the value 1. If false, then it is assigned the value 0.


