
Lecture 29

Reduction of Higher Order Equations to
Systems

The motion of a pendulum

Consider the motion of an ideal pendulum that consists of a mass m attached to an arm of length `. If we
ignore friction, then Newton’s laws of motion tell us

mθ̈ = −mg
`

sin θ,

where θ is the angle of displacement. t
A
A
A
A
A
A
A
Aw
`θ

Figure 29.1: A pendulum.

If we also incorporate moving friction and sinusoidal forcing then the equation takes the form

mθ̈ + γθ̇ +
mg

`
sin θ = A sin Ωt.

Here γ is the coefficient of friction and A and Ω are the amplitude and frequency of the forcing. Usually,
this equation would be rewritten by dividing through by m to produce

θ̈ + cθ̇ + ω sin θ = a sin Ωt, (29.1)

where c = γ/m. ω = g/` and a = A/m.

This is a second order ODE because the second derivative with respect to time t is the highest derivative. It
is nonlinear because it has the term sin θ and which is a nonlinear function of the dependent variable θ. A
solution of the equation would be a function θ(t). To get a specific solution we need side conditions. Because
it is second order, 2 conditions are needed, and the usual conditions are initial conditions

θ(0) = θ0 and θ̇(0) = v0. (29.2)

116



Introduction to Numerical Methods. . . by Young and Mohlenkamp c©2018 117

Converting a general higher order equation

All of the standard methods for solving ordinary differential equations are intended for first order equations.
For this reason, it is inconvenient to solve higher order equations numerically. However, most higher-order
differential equations that occur in applications can be converted to a system of first order equations and
that is what is usually done in practice.

Suppose that an n-th order equation can be solved for the n-th derivative, i.e. it can be written in the form

x(n) = f

(
t, x, ẋ, ẍ, . . . ,

dn−1x

dtn−1

)
.

Then it can be converted to a first-order system by this standard change of variables:

y1 = x

y2 = ẋ

...

yn = x(n−1) =
dn−1x

dtn−1
.

The resulting first-order system is

ẏ1 = ẋ = y2

ẏ2 = ẍ = y3

...

ẏn = x(n) = f(t, y1, y2, . . . , yn).

In vector form this is simply ẏ = f(t,y) with fi(t,y) = yi+1 for i < n and fn(t,y) = f(t, y1, y2, . . . , yn).

For the example of the pendulum (29.1) the change of variables has the form

y1 = θ

y2 = θ̇,

and the resulting equations are

ẏ1 = y2

ẏ2 = −cy2 − ω sin(y1) + a sin(Ωt).
(29.3)

In vector form this is

ẏ =

(
y2

−cy2 − ω sin(y1) + a sin(Ωt)

)
.

The initial conditions are converted to

y(0) =

(
y1(0)
y2(0)

)
=

(
θ0
v0

)
. (29.4)

As stated above, the main reason we wish to change a higher order equation into a system of equations is
that this form is convenient for solving the equation numerically. Most general software for solving ODEs

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/


118 LECTURE 29. REDUCTION OF HIGHER ORDER EQUATIONS TO SYSTEMS

(including Matlab) requires that the ODE be input in the form of a first-order system. In addition, there
is a conceptual reason to make the change. In a system described by a higher order equation, knowing the
position is not enough to know what the system is doing. In the case of a second order equation, such as
the pendulum, one must know both the angle and the angular velocity to know what the pendulum is really
doing. We call the pair (θ, θ̇) the state of the system. Generally in applications the vector y is the state of
the system described by the differential equation.

Using Matlab to solve a system of ODE’s

In Matlab there are several commands that can be used to solve an initial value problem for a system of
differential equations. Each of these correspond to different solving methods. The standard one is ode45,
which uses the algorithm “Runge-Kutta 4 5”. We will learn about this algorithm later.

To use ode45 for a system, we have to input the vector function f that defines the system, the time span
we want to consider and the initial value of the vector y. Suppose we want to solve the pendulum system
with ω = a = Ω = 1 and c = .1 for t ∈ [0, 20] with initial condition (θ(0), θ′(0)) = (1,−1.5). One way to use
ode45 is to enter

� dy = @(t,y)[y(2); -.1*y(2)-sin(y(1))+ sin(t)]

� [T Y] = ode45(dy ,[0 20] ,[1; -1.5]);

Alternatively, we could could create a function program

function dy = mypendulum(t,y)

dy = [y(2); -.1*y(2)-sin(y(1))+ sin(t)]

end

and then enter

� [T Y] = ode45(@mypendulum ,[0 20] ,[1; -1.5]);

The output T contains times and Y contains values of the vector y at those times. Try

� size(T)

� T(1:10)

� size(Y)

� Y(1:10 ,:)

Since the first coordinate of the vector is the position (angle), we are mainly interested in its values:

� theta = Y(:,1)

� plot(T,theta)

In the next two sections we will learn enough about numerical methods for initial value problems to under-
stand roughly how Matlab produces this approximate solution.



Introduction to Numerical Methods. . . by Young and Mohlenkamp c©2018 119

Exercises

29.1 Consider the pendulum system but with no friction or forcing, i.e. γ = A = 0. What would equation
(29.3) become in this case? Use the last example to solve the system with the initial condition [θ0, 0]′

for θ0 = .1π. Use the plot of the solution to find the frequency of the pendulum with this initial
condition. Do the same for θ0 = .5π and .9π. How does the frequency depend on the amplitude of a
pendulum?

29.2 Transform the ODE
...
x + ẍ2 − 3ẋ3 + cos2 x = e−t sin(3t)

into a first order system. Suppose the initial conditions for the ODE are x(1) = 1, ẋ(1) = 2, and
ẍ(1) = 0. Find a numerical solution of this IVP using ode45 and plot the first coordinate (x). Try
time intervals [1 2] and [1 2.1] and explain what you observe.

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/

