
Lecture 21

Integration: Left, Right and Trapezoid Rules

The Left and Right endpoint rules

In this section, we wish to approximate a definite integral∫ b

a

f(x) dx ,

where f(x) is a continuous function. In calculus we learned that integrals are (signed) areas and can be
approximated by sums of smaller areas, such as the areas of rectangles. We begin by choosing points {xi}
that subdivide [a, b]:

a = x0 < x1 < . . . < xn−1 < xn = b.

The subintervals [xi−1, xi] determine the width ∆xi of each of the approximating rectangles. For the height,
we learned that we can choose any height of the function f(x∗i ) where x∗i ∈ [xi−1, xi]. The resulting
approximation is ∫ b

a

f(x) dx ≈
n∑
i=1

f(x∗i )∆xi.

To use this to approximate integrals with actual numbers, we need to have a specific x∗i in each interval.
The two simplest (and worst) ways to choose x∗i are as the left-hand point or the right-hand point of each
interval. This gives concrete approximations which we denote by Ln and Rn given by

Ln =

n∑
i=1

f(xi−1)∆xi and Rn =

n∑
i=1

f(xi)∆xi .

function L = myleftsum(x,y)

% produces the left sum from data input.

% Inputs: x -- vector of the x coordinates of the partition

% y -- vector of the corresponding y coordinates

% Output: returns the approximate integral

n = length(x);

L = 0;

for i = 1:n-1

% accumulate height times width

L = L + y(i)*(x(i+1) - x(i));

end

end
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Figure 21.1: The left and right sums, Ln and Rn.

Often we can take {xi} to be evenly spaced, with each interval having the same width:

h =
b− a
n

,

where n is the number of subintervals. If this is the case, then Ln and Rn simplify to

Ln = h

n−1∑
i=0

f(xi) and (21.1)

Rn = h

n∑
i=1

f(xi). (21.2)

The foolishness of choosing left or right endpoints is illustrated in Figure 21.1. As you can see, for a very
simple function like f(x) = 1 + .5x, each rectangle of Ln is too short, while each rectangle of Rn is too tall.
This will hold for any increasing function. For decreasing functions Ln will always be too large while Rn
will always be too small.

The Trapezoid rule

Knowing that the errors of Ln and Rn are of opposite sign, a very reasonable way to get a better approxi-
mation is to take an average of the two. We will call the new approximation Tn:

Tn =
Ln +Rn

2
.

This method also has a straight-forward geometric interpretation. On each subrectangle we are using

Ai =
f(xi−1) + f(xi)

2
∆xi ,

which is exactly the area of the trapezoid with sides f(xi−1) and f(xi). We thus call the method the trapezoid
method. See Figure 21.2. We can rewrite Tn as

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/
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Figure 21.2: The trapezoid rule, Tn.

Tn =

n∑
i=1

f(xi−1) + f(xi)

2
∆xi.

In the evenly spaced case, we can write this as

Tn =
h

2

(
f(x0) + 2f(x1) + . . .+ 2f(xn−1) + f(xn)

)
. (21.3)

Caution: The convention used here is to begin numbering the points at 0, i.e. x0 = a; this allows n to be the
number of subintervals and the index of the last point xn. However, Matlab’s indexing convention begins
at 1. Thus, when programming in Matlab, the first entry in x will be x0, i.e. x(1)= x0 and x(n+1)= xn.

If we are given data about the function, rather than a formula for the function, often the data are not evenly
spaced. The following function program could then be used.

function T = mytrap(x,y)

% Calculates the Trapezoid rule approximation of the integral from data

% Inputs: x -- vector of the x coordinates of the partitian

% y -- vector of the corresponding y coordinates

% Output: returns the approximate integral

n = length(x);

T = 0;

for i = 1:n-1

% accumulate twice the signed area of the trapezoids

T = T + (y(i) + y(i+1)) * (x(i+1) - x(i));

end

T = T/2; % correct for the missing 1/2

end
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Using the Trapezoid rule for areas in the plane

In multi-variable calculus you were supposed to learn that you can calculate the area of a region R in the
plane by calculating the line integral

A = −
∮
C

y dx , (21.4)

where C is the counter-clockwise curve around the boundary of the region. We can represent such a curve
by consecutive points on it, i.e. x̄ = (x0, x1, x2, . . . , xn−1, xn), and ȳ = (y0, y1, y2, . . . , yn−1, yn). Since we
are assuming the curve ends where it begins, we require (xn, yn) = (x0, y0). Applying the trapezoid method
to the integral (21.4) gives

A = −
n∑
i=1

yi−1 + yi
2

(xi − xi−1) .

This formula then is the basis for calculating areas when coordinates of boundary points are known, but not
necessarily formulas for the boundaries such as in a land survey.

In the following script, we can use this method to approximate the area of a unit circle using n points on
the circle:

% Calculates pi using a trapezoid approximation of the unit circle.

format long

n = 10; % evaluate points on the circle

t = linspace (0,2*pi,n+1);

x = cos(t);

y = sin(t);

plot(x,y)

A = 0 % accumulate (twice) the trapezoid area

for i = 1:n

A = A - (y(i)+y(i+1))*(x(i+1)-x(i));

end

A = A/2 % correct for the missing 1/2

Vector Operations using Slicing and Summing

In the programs above we used loops to explicitly accumulate sums. For example, in mytrap we had

T = 0;

for i = 1:n-1

T = T + .5*(y(i)+y(i+1))*(x(i+1) - x(i));

end

The alternative is to use vector operations by taking slices out of the vectors and using the sum function.
We can replace the above code by

T = .5*sum( (y(1:n-1)+y(2:n)) .* (x(2:n)-x(1:n-1)) );

Generally, explicit loops are easier to understand but vector operations are more efficient and compact.

http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/
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Exercises

21.1 For the integral
∫ 2

1

√
x dx calculate L4, R4, and T4 with even spacing (by hand, but use a calculator

and a lot of digits) using formulas (21.1), (21.2) and (21.3). Find the percentage error of these
approximations, using the exact value.

21.2 Write a well-commented Matlab function program myints whose inputs are f , a, b and n and whose
outputs are L, R and T , the left, right and trapezoid integral approximations for f on [a, b] with n
subintervals. To make it efficient,

• take advantage of the fact that ∆xi is constant,

• use x = linspace(a,b,n+1) to make the x values,

• use y = f(x) to make the y values,

• use slice and sum to add the 2nd to nth y entries once,

• and then add on the missing terms to obtain the left, right and trapezoid approximations.

Change to format long and apply your program to the integral
∫ 2

1

√
x dx. Compare with the results of

the previous exercise. Also find L100, R100 and T100 and the percentage errors of these approximations.

Turn in the program and a brief summary of the results.


