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This pamphlet is intended for the scientist who is considering using Spherical Harmonics for some appli-
cation. It is designed to introduce the Spherical Harmonics from a theoretical perspective and then discuss
those practical issues necessary for their use in applications.

I expect great variability in the backgrounds of the readers. In order to be informative to those who
know less, without insulting those who know more, I have adopted the strategy “State even basic facts, but
briefly.”

My dissertation work was a fast transform for Spherical Harmonics [6]. After its publication, I started
receiving questions about Spherical Harmonics in general, rather than about my work specifically. This
pamphlet aims to answer such general questions. If you find mistakes, or feel that important material is
unclear or missing, please inform me.

1 A Theory of Spherical Harmonics

In this section we give a development of Spherical Harmonics. There are other developments from other
perspectives. The one chosen here has the benefit of being very concrete.

1.1 Mathematical Preliminaries

We define the L2 inner product of two functions to be

〈f, g〉 =

∫
f(s)ḡ(s)ds (1)

where ḡ denotes complex conjugation and the integral is over the space of interest, for example
∫ 2π

0
dθ on the

circle or
∫ 2π

0

∫ π
0

sinφdφdθ on the sphere. We define the L2 norm by ||f || =
√
〈f, f〉. The space L2 consists

of all functions such that ||f || <∞.
A basis for L2 is a set of functions {ψi} with the properties

Orthogonal: 〈ψi, ψj〉 = 0 for i 6= j.

Normalized: ||ψi|| = 1.

Spanning: Any function in L2 can be written as a linear combination of the ψi’s; f =
∑
i αiψi, αi complex

numbers.

The notation f(x) = O(g(x)) means lim(|f(x)/g(x)|) < C < ∞ where the limit is toward the point of
interest, usually ∞.
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1.2 R2 : Fourier Series

Spherical Harmonics can be generated in the same way as Fourier Series, simply in one dimension higher.
One cannot understand Spherical Harmonics without first understanding Fourier series. Conversely, a good
understanding of Fourier series will get you much of the way through the analysis of Spherical Harmonics.
In this section we develop the basic theory of Fourier series, from a perspective that will translate well when
we move to Spherical Harmonics. Much of this discussion is based on Stein and Weiss [7, Chapter IV].

We start with something familiar, polynomials in R2, {(x, y) : x, y ∈ R}. Then we restrict our attention
to those polynomials that are harmonic, meaning ∆2p(x, y) = 0, where ∆2 is the two-dimensional Laplacian

∆2 =
∂2

∂x2
+

∂2

∂y2
. (2)

For example, ∆2(x+ x2 − y2) = 0.
Next we further restrict our consideration to homogeneous harmonic polynomials. A function p(x, y) is

homogeneous of degree n if p(tx, ty) = tnp(x, y) for all positive real numbers t. Examples of homogeneous
harmonic polynomials of degrees 0, 1, 2, and 3 are 6, x, x2 − y2, and 3x2y − y3. Homogeneous functions
are nicely represented in polar coordinates {(r, θ) : r ∈ R+, θ ∈ [0, 2π)}, where (x, y) = (r cos θ, r sin θ). A
function pn(x, y) that is homogeneous of degree n can be written as pn(x, y) = rnqn(θ) for some function qn.
In polar coordinates the Laplacian (2) becomes

∆2 =
1

r2
∂2

∂θ2
+

∂2

∂r2
+

1

r

∂

∂r
. (3)

A homogeneous harmonic polynomial of degree n, (n ≥ 0) satisfies

0 = ∆2pn(x, y) = n(n− 1)rn−2qn(θ) +
1

r
nrn−1qn(θ) +

1

r2
rnq′′n(θ) = rn−2

(
n2qn(θ) + q′′n(θ)

)
. (4)

The operator ∆2 acts on homogeneous functions in a simple way, separately in r and θ. In r it simply
reduces the power by two. In θ it acts using the restriction of ∆2 to the circle, i.e. the Circular Laplacian

∆2S = ∂2

∂θ2 . For (4) to hold, qn must be an eigenfunction of ∆2S , i.e. ∆2Sqn = −n2qn.
The operator ∆2S is self-adjoint on the circle, meaning

〈∆2Sf(θ), g(θ)〉 = 〈f(θ),∆2Sg(θ)〉. (5)

This fact follows by integration by parts. Self-adjoint operators have the property that eigenfunctions with
different eigenvalues are orthogonal. We have

− n2〈qn(θ), qm(θ)〉 = 〈∆2Sqn(θ), qm(θ)〉 = 〈qn(θ),∆2Sqm(θ)〉 = −m2〈qn(θ), qm(θ)〉 , (6)

so if n 6= m, we must have 〈qn(θ), qm(θ)〉 = 0.
The next question is whether there can be more than one qn for the same n. The qn satisfy q′′n(θ) =

−n2q(θ). All solutions of this differential equation are of the form qn(θ) = A cos(nθ) +B sin(nθ) or equiva-
lently qn(θ) = Ceinθ +De−inθ. Thus there are many possibilities for qn(θ), but we can generate them all as
linear combinations of two elements, {einθ, e−inθ}, chosen to be orthogonal. The eigenspaces are thus two
dimensional. (For n = 0 it is only one dimensional.) This construction, now complete, has generated the
Fourier series.

Let us consider next what we have given up by using only homogeneous, harmonic polynomials.

Theorem 1 ([7, p.139]). Any polynomial of degree n, when restricted to the circle, can be written as a sum
of homogeneous harmonic polynomials of degree at most n.
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On the circle itself, we lose nothing by our restrictions. Again restricted to the circle, polynomials
can approximate any continuous function, and thus any L2 function, to any desired degree of accuracy.
(Polynomials are dense in L2(S1).) The exponentials {einθ}n∈Z thus span L2. After normalization, they
will be a basis. There are of course independent proofs that the Fourier series are a basis for L2(S1).

To recap, we have constructed the Fourier series basis for the circle by

1. restricting ∆2 to the circle,

2. decomposing into the eigenspaces of ∆2S , and then

3. taking a convenient basis within each eigenspace.

1.3 R3: Ordinary Spherical Harmonics

The construction in Section 1.2 can be done in any dimension. The sphere S1 in R2 is normally called the
circle, but we could equally well call it a sphere and say the Fourier Series are Spherical Harmonics. The
usual usage for Spherical Harmonics refers to the Surface Spherical Harmonics on the sphere S2 in R3. We
shall follow this usage and examine this case in this section.

In R3, {(x, y, z) : x, y, z ∈ R}, the Laplacian is

∆3 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (7)

In spherical coordinates {(r, θ, φ) : r ∈ R+, θ ∈ [0, 2π), φ ∈ [0, π]}, where (x, y, z) = (r cos θ sinφ, r sin θ sinφ, r cosφ),
this means

∆3 = csc2 φ
∂2

∂θ2
+

∂2

∂φ2
+ cotφ

∂

∂φ
+ 2r

∂

∂r
+ r2

∂2

∂r2
. (8)

Suppose, as above, we have a homogeneous harmonic polynomial of degree n, pn(x, y, z) = rnqn(θ, φ).
We then have

0 = ∆3pn =

[
csc2 φ

∂2

∂θ2
+

∂2

∂φ2
+ cotφ

∂

∂φ

]
rnqn(θ, φ) + 2rnrn−1qn(θ, φ) + r2n(n− 1)rn−2qn(θ, φ) (9)

= rn
([

csc2 φ
∂2

∂θ2
+

∂2

∂φ2
+ cotφ

∂

∂φ

]
+ n(n+ 1)

)
qn(θ, φ) . (10)

Defining the Spherical Laplacian by

∆3S = csc2 φ
∂2

∂θ2
+

∂2

∂φ2
+ cotφ

∂

∂φ
, (11)

from (10) we have
∆3Sqn(θ, φ) = −n(n+ 1)qn(θ, φ) . (12)

This qn is therefore an eigenfunction of the Spherical Laplacian. Any such eigenfunction is called a Spherical
Harmonic.

As before, we note that ∆3S is self-adjoint, which implies that the eigenspaces Λn are orthogonal. The
space Λn consists of the homogeneous harmonic polynomials of degree n restricted to the sphere, and has
dimension 2n + 1. On the sphere, the homogeneous harmonic polynomials span the set of all polynomials,
which in turn are dense in L2. Our spherical harmonics therefore span L2. If we take a basis within each
eigenspace then this collection will give a basis for L2 of the sphere. Thus Spherical Harmonics arise in R3

in the same way Fourier series arise in R2. They are consequently sometimes called ‘Fourier series on the
Sphere’. (Other less deserving objects sometimes also go by this name in the literature.)
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For fixed n, we can organize a basis for Λn as{
eimθ√

2π
P̃mn (cosφ)

}
−n≤m≤n

. (13)

It is not immediately obvious that we can separate variables and assume exponential functions in the θ
direction. We are able to do this essentially because the lines of fixed φ are circles. We could also simply
assume this form and show the construction succeeds. This organization is not forced, but separating the
variables is so useful that there are no competitive options. A disadvantage of this organization is that it
makes the poles into special points.

We would like to find the conditions on P̃mn to make (13) a set of (smooth) spherical harmonics. From
(12), we need to have

∆3S
eimθ√

2π
P̃mn (cosφ) =

[
∂2

∂φ2
+ cotφ

∂

∂φ
− m2

sin2 φ

]
eimθ√

2π
P̃mn (cosφ) = −n(n− 1)

eimθ√
2π
P̃mn (cosφ). (14)

This equation, and the condition that P̃mn (1) 6= ±∞, identifies the P̃mn ’s up to a constant as the Associ-
ated Legendre Functions (of the first kind) of order m and degree n. We use the tilde (̃·) to indicate the
L2 normalized version of the classically defined Associated Legendre functions, denoted Pmn . P̃mn can be
constructed explicitly, and we do this in Section 3.1.

Note that for each fixed m, the set {P̃mn (cosφ)}n≥|m| will need to be orthogonal with respect to the
measure sinφdφ, so that harmonics from different Λn will be orthogonal.

1.4 . . . and Why Do We Care?

In this section we consider some of the applications of Spherical Harmonics. We do this mainly by showing
some of the applications of Fourier Series and seeing how they extend. These results are well known.

Fourier Series are a basis for the circle. They have the nice property that the eigenspaces Λn are rotation-
invariant. Since the Laplacian does not care where the coordinates are, its eigenspaces do not either. If we
restrict ourselves to functions generated by the eigenspaces up to degree N , this restriction is ‘fair’ in the
sense that all portions of the circle are treated equally. The rotation-invariance of Λn also implies that if we
know the expansion of a function, we can compute the expansion of any of its rotations by applying a sparse
matrix. This matrix is zero except for 2 × 2 blocks along the diagonal, one block for each n. If we have a
band-width limitation n < N , this means we can apply this matrix in 2N time, instead of 4N2 time.

Spherical Harmonics work similarly. The eigenspaces are also rotation-invariant, though now they are
not of the same size. The matrix of a rotation in this basis consists of blocks along the diagonal, with a
(2n + 1) × (2n + 1) block for Λn. (These are called Wigner rotation matrices.) If we again have a limit
n < N , we can apply the matrix in

∑
(2n + 1)2 = (4N3 −N)/3 time, instead of [

∑
(2n + 1)]2 = N4 time.

A decomposition using Λn for n < N is again ‘fair’ to all points on the sphere.
Next we consider operators which are linear and rotation-invariant. Many operators which correspond to

physical processes (gravity, heat, electricity) are coordinate-invariant. In particular, if the process is taking
place on a circle or sphere, these operators commute with rotations. On the circle, rotating einθ through an
angle ν is the same as multiplying by einν . For such an operator L, this means

(Leinθ)(ξ) = (Lein(θ−ν))(ξ + ν) = e−inν(Leinθ)(ξ + ν) . (15)

Since the left side of (15) is independent of ν, the right side must also be is independent of ν, which implies
(Leinθ)(ξ + ν) = λne

in(ξ+ν) for some constant λn. Thus the Fourier Series are eigenfunctions for all such
operators. Since they are also a basis, this means they diagonalize such operators, making them trivial to
apply. For the Spherical Harmonics, we have the same result, and the proof is essentially the same.
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Example 1 (Convolution). The well used property that Fourier series convert convolution to multiplication
is equivalent to noting the Fourier Series are eigenfunctions, as we did above. For Spherical Harmonics we
have the similar result

(f ∗ g)mn = fmn g
0
n. (16)

See e.g. [3, p.210] for its discussion.

2 Understanding the Spherical Harmonics

There is a method for estimating the solutions to some types of differential equations, in particular Schrödinger
equations, known variously as the Quasi-Classical, Semi-Classical, or WKB method, or more generally as an
asymptotic analysis. See e.g. Landau and Lifschitz [5, Chapter VII] or Bender and Orszag [2]. We will use
this method to get a qualitative description of the Associated Legendre functions.

Supposing we have a function ψ(x) which satisfies a Schrödinger equation

d2

dx2
ψ(x) = −V (x)ψ(x), (17)

this method approximates ψ by exp(
∫ x±√−V (x)dt). There is a significant amount of theory surrounding

this approximation, but the basic idea is that if taking two derivatives has the affect of multiplying by
a function, then taking one derivative should be like multiplying by the square root of that function. If
V (x) < 0 then the root is real, and we will have exponential growth or decay, depending on the choice of ±.
If V (x) > 0 then the root is imaginary, and we will have oscillations of ‘instantaneous frequency’

√
V (x).

Points where V (x) = 0 are called turning points.
We know our Associated Legendre functions satisfy the differential equation (14). This is not quite in

the right form, so we construct the functions {ψmn (φ) =
√

sinφP̃mn (cosφ)}. Since we multiplied by ‘half’ of
the measure sinφ, {ψmn (φ)} is a basis with measure dφ for fixed m. From (14) we can deduce the differential
equation

d2

dφ2
ψmn (φ) = −

[
(n+ 1/2)2 − m2 − 1/4

sin2 φ

]
ψmn (φ) , (18)

which is a nice Schrödinger equation, to which we can apply the Quasi-Classical approximation. This
approximation yields ‘instantaneous frequency’

νmn (φ) =

√
(n+ 1/2)2 − m2 − 1/4

sin2 φ
, (19)

valid when the argument of the root is positive, and the approximation ψmn (φ) ≈ exp
(
i
∫ φ

νmn (t)dt
)

.

These estimates tell us that at the edges of the interval (when V (x) < 0) our functions decay rapidly and
smoothly. As we move toward the center of the interval, they have instantaneous frequency increasing and
concave down (see Figures 1 and 2). Globally these functions are complicated, but locally they look very
much like trigonometric functions. These estimates can also be used to model the entire matrix (ψmn (φj))n,j
for m fixed (see Figure 3).

In (18) we saw that ψmn (φ) =
√

sinφP̃mn (cosφ) satisfied a Schrödinger equation with

V (φ) = (n+ 1/2)2 − m2 − 1/4

sin2 φ
. (20)

Instead we could consider

V (x) = (n+ 1/2)2 − m2 − 1/4

x2
(21)



3 COMPUTING WITH SPHERICAL HARMONICS 6

Figure 1: ψ20
60(φ) =

√
sinφP̃ 20

60 (cosφ) on [0, π].

Figure 2: ψ40
60(φ) =

√
sinφP̃ 40

60 (cosφ) on [0, π].

and ψ would be the Bessel function
√
xJm((n+1/2)x). Qualitatively, these behave the same as the Associated

Legendre functions on [0, π/2]. See Figure 4 for graphs comparing the behavior of an Associated Legendre
function and the corresponding Bessel function. Classical theorems relating the zeroes of Bessel functions
and Associated Legendre functions in the limit as n→∞ may be found in [8, p.127].

We note that for a fixed interval in φ that avoids 0 and π, and for fixed m, as n→∞, νmn tends toward
the constant function n + 1/2. Thus ψmn tends toward a cosine. Many other asymptotic relationships may
be found in [1, Section 8].

3 Computing with Spherical Harmonics

In this section we outline what is needed in order to do computations with Spherical Harmonics. In Section 3.1
we discuss how to construct these functions. In Section 3.2 we discuss the ways to discretize the sphere and
their implications. In Section 3.3 we synthesize these concepts and produce the algorithm for expanding in
or evaluating Spherical Harmonic series.

3.1 Generating the P̃m
n ’s

In this section we present a methods for constructing the Associated Legendre Functions. There are many
other representations for the Associated Legendre functions and formulas involving them [1] [4]. The only
method we have found satisfactory for numerical work is the normalized recurrence (29) below.

The Associated Legendre functions may be constructed as an amplitude times a Jacobi polynomial,

P̃mn (cosφ) = (sinφ)mP̃
(m,m)
n−m (cosφ) for m ≥ 0 , (22)
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Figure 3: The positive part of ψ40
n (φ) =

√
sinφP̃ 40

n (cosφ) for n in [0, 256] and φ in [0, π/2]. The n axis points
down, and the φ axis to the right.

and for m < 0 using P̃mn (cosφ) = P̃−mn (cosφ). This formula is immensely useful, but we must be cautious
in its application. If we write out the Jacobi polynomial as a polynomial, it will have huge coefficients. If
we try to evaluate this representation at a point we are attempting to subtract huge numbers to yield small
numbers, which will lead to (catastrophic) loss of precision. The problem is that the monomials xk are nearly
colinear.

Another aspect to note is that while
√

sinφP̃mn (cosφ) is of nearly constant amplitude (Figures 1 and 2),
(sinφ)m can be very small. This means the Jacobi polynomials are very large in this region, although size 1
near φ = π/2. Algorithms which ignore this conditioning problem in the polynomial part of the Associated
Legendre functions (such as [3]) will be unstable.

The Jacobi Polynomials can be generated by a three term recurrence relation. The traditional recurrence
is [8, p.68,71]

P
(m,m)
−1 (x) =0 , (23)

P
(m,m)
0 (x) =1 , and (24)

k(k + 2m)(k +m− 1)P
(m,m)
k (x) =(2k + 2m− 1)(k +m)(k +m− 1)xP

(m,m)
k−1 (x)

− (k +m− 1)2(k +m)P
(m,m)
k−2 (x). (25)

To normalize to obtain P̃
(m,m)
k we must divide by√

22m+1Γ2(k +m+ 1)

(2k + 2m+ 1)Γ(k + 1)Γ(k + 2m+ 1)
. (26)

The Γ functions (factorials) in (26) can cause overflows for even moderate m and k.
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Figure 4:
√

sinφP̃ 20
60 (cosφ) and

√
rJ20(60r) on [0, π/2]

Using the recurrence relation (25) and normalization (26) above we can construct P̃
(m,m)
k with the

recurrence

P̃
(m,m)
−1 (x) =0 , (27)

P̃
(m,m)
0 (x) =

√
Γ(2m+ 2)

2

1

2mΓ(m+ 1)
=

1√
2

m∏
j=1

√
1 +

1

2j
, and (28)

P̃
(m,m)
k (x) =2xP̃

(m,m)
k−1 (x)

(
1 +

m− 1/2

k

)1/2(
1− m− 1/2

k + 2m

)1/2

− P̃ (m,m)
k−2 (x)

(
1 +

4

2k + 2m− 3

)1/2(
1− 1

k

)1/2(
1− 1

k + 2m

)1/2

. (29)

For large m this recurrence is poorly conditioned, especially when m ≤ n ≤ 2m. The solution we
want corresponds to the larger singular value, however, so the conditioning acts in our favor. The recur-
rence is also prone to underflows when m is a few thousand. We can fix this by using scientific notation,√

sinφP̃mn (cosφ) = A2B , 1/2 < A ≤ 1, B ∈ Z, and storing A and B separately.

Remark 1. The formulas above give P̃mn with a particular sign convention, where P̃mn (cosφ) is positive for
small φ. For translation into other conventions, see [1].

3.2 Discretizing the Problem

One would like to have an uniform discretization for the sphere, with all portions equally represented. From
such an uniform discretization we could construct a platonic solid. It is known, however, that there are only
a few platonic solids, and the largest number of faces is 20 (icosohedron) and largest number of vertices is
20 (dodecahedron). If we want to discretize the sphere with many points, we cannot do it uniformly.

Instead we set the goal of using the fewest points to resolve the Spherical Harmonics up to some degree.
Since the Spherical Harmonics themselves are “fair” and “uniform”, this gives a good representation for
functions on the sphere.

3.2.1 Principles of Quadrature

A quadrature is a rule for converting an integral into a sum. Quadratures may be exact or approximate.
Here we restrict our attention to rules that are exact for some given class of functions. We consider integrals
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on [−1, 1] and find sample points {xj}N1 and weights {wj}N1 such that∫ 1

−1
f(x)dx =

N∑
j=1

wjf(xj) . (30)

First suppose f(x) is a line. Given any two sample values of f , we can determine this line, and thus the
value of the integral. The line can be determined as a Lagrange interpolating polynomial by

(x− x2)

(x1 − x2)
f(x1) +

(x− x1)

(x2 − x1)
f(x2) (31)

and then the integral by∫ 1

−1

(x− x2)

(x1 − x2)
dxf(x1) +

∫ 1

−1

(x− x1)

(x2 − x1)
dxf(x2) = w1f(x1) + w2f(x2) . (32)

Any two sample points will work in theory, but if x1 and x2 are both close to 1, for example, then the
quadrature will be numerically unstable since w1 and w2 will be large and of opposite sign.

The same procedure works for higher degree polynomials. Given N sample points we can construct a
Lagrange interpolating polynomial as in (31) and then a quadrature as in (32). If f has degree less than N
we have an exact quadrature rule.

The Gaussian quadrature is a trick that gives us an exact quadrature for polynomials of degree less than
2N using only N points. The Gaussian quadrature is built from the Legendre Polynomials Pn (coincidentally
P̃n = P̃ 0

n). The Legendre polynomials are constructed by a Gramm-Schmidt orthonormalization procedure
on [−1, 1] starting with the sequence 1, x, x2, . . .. The effect of this is that P̃n is of degree n and is orthogonal
to all polynomials pk with degree k < n, i.e.∫ 1

−1
P̃n(x)pk(x)dx = 0 . (33)

If f is of degree 2N − 1 we can use polynomial division to write f(x) = PN (x)pN−1(x) + rN−1(x) where
the subscript denotes degree. Because of (33) we know

∫
f =

∫
r. Since rN−1 is of degree N − 1, its integral

may be done using (any) N quadrature points. Our challenge is to pick the points so that
∫
PNpN−1 = 0.

But P̃N (x) has exactly N zeroes in [−1, 1], so we pick these as our sample points.

Remark 2. Transformed to the sphere using xj = cosφj we note that φj are nearly equispaced, gathering
slightly near the poles. One can use true equispaced nodes in φ, and these correspond to Chebychev (spelling
varies) nodes in x. The Chebychev nodes have several nice properties, but require twice as many points as
the Gaussian nodes.

The principle for quadratures of trigonometric polynomials is slightly different. We pick N sample points,
equally spaced: {j2π/N : 0 ≤ j < N}. For f =

∑
|k|<N ake

ikθ, we have
∫
f = a0 and

1

N

∑
j

∑
|k|<N

ake
ikj2π/N =

1

N

∑
|k|<N

ak
∑
j

eikj2π/N . (34)

If 0 < |k| < N then the set {eikj2π/N} of points in the complex plane is symmetric about 0, and so must sum
to 0. When k = 0 (or lN), ei0j2π/N = 1, so the sum is (1/N)a0N = a0. Thus for trigonometric polynomials,
the quadrature weights are all 1 (really 1/N) and the quadrature points are an equispaced sampling.
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3.2.2 Spherical Harmonics

In order to expand in Spherical Harmonics (Section 3.3) we will need to take inner products of Spherical
Harmonics. Since these inner products are integrals, the key point of our discretization is that it gives a
quadrature valid for the product of two Spherical Harmonics. We need to compute the integrals∫ π

0

∫ 2π

0

P̃m
′

n′ (cosφ)
eim

′θ

√
2π

P̃mn (cosφ)
e−imθ√

2π
sinφdφdθ . (35)

In θ the Spherical Harmonics are just exponentials, and so is their product, so we use the rule for
trigonometric polynomials and evaluate using 2N points equispaced in θ. If m 6= m′ we get 0, otherwise we
are then left with the integral ∫ π

0

P̃mn′ (cosφ)P̃mn (cosφ) sinφdφ . (36)

For n, n′ < N , P̃mn (cosφ)P̃mn′ (cosφ) = P (cosφ) is a polynomial in cosφ of degree at most 2N − 2. One
can verify this by using their explicit construction in terms of Jacobi polynomials (Section 3.1) and noting
sin2m φ = (1− cos2 φ)m. Our integral then reduces to∫ 1

−1
P (x)dx . (37)

Using Gaussian nodes and weights (in x) we only need N points to obtain an exact quadrature formula.
One could instead use equally spaces points in φ. The advantage of equally spaced points is their

simplicity. Sometimes data is provided on an equispaced grid, or a data processing or display program
assumes it. The disadvantage is that they are less efficient. Equispaced points in φ are equivalent to
Chebychev nodes in x, so we will need 2N points. One can translate the usual results for Chebychev weights
to our case, or follow the derivation in Driscoll and Healy [3] to obtain

w2N (j) =

√
2

N

N−1∑
l=0

1

2l + 1
sin((2l + 1)φj) . (38)

3.2.3 Thinning the Grid

As we can see in Figure 1, the Associated Legendre Functions become very small near the ends of the interval,
which correspond to the poles. As we increase m, this effect becomes stronger, as we can see in Figure 2.
Although the function does not become zero, at some point it becomes small enough that we can neglect it.
Although it is difficult to give an analytic expression for when this occurs, it is easy to to track the turning
point (inflection point), where the rapid decay begins. From the differential equation (18), we see that the
inflection point occurs when (n+ 1/2)2 − (m2 − 1/4)(sin2 φ), so sinφ ≈ m/n.

When computing the integral (36) we can therefore discard some quadrature points, essentially those
that satisfy sinφj < m/N . As m increases the number of discarded points increases. For a given φ, we
therefore only need to compute the integral in θ for m < mφ ≤ N and so can use 2mφ points instead of 2N .
This effect allows us to “thin” the grid by discarding some points near the poles. After this thinning, each
point corresponds to an approximately equal area. In practice, as we move to the pole, thinning is usually
only done when the number of points in θ can be reduced by a factor of 2.

3.2.4 Other Considerations

One nice feature of Fourier series is that it is also a discrete basis: using N values, we expand into N basis
functions and so lose nothing. For Spherical Harmonics, however, we have to assume something about the
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function f we wish to expand. We needed 2N × N = 2N2 sample points to expand to degree N , yielding
only 2N ×N/2 = N2 Spherical Harmonics. We thus cannot hope to capture an arbitrary function on 2N2

points.
If we try to represent a function using too few points, we will have aliasing. With Fourier series, the

function exp(i(N + k)θ) and the function exp(ikθ) are indistinguishable on the grid {j2π/N : 0 ≤ j < N},
since

exp(i(N + k)j2π/N) = exp(ij2π) exp(ikj2π/N) = exp(ikj2π/N) . (39)

This is periodic aliasing since frequencies k and N + k are confused. Another type of aliasing is reflective
aliasing, where frequencies N + k and N − k are confused. This occurs, for example, with the cosine basis
{cos(kx)}N−1k=0 on x ∈ [0, π], with the discretization {jπ/N : 0 ≤ j < N}. By trigonometric formulas, we
have

cos((N + k)jπ/N) = cos((2N + (k −N)jπ/N)

= cos(2jπ) cos((k −N)jπ/N)− sin(2jπ) sin((k −N)jπ/N)

= cos((N − k)jπ/N) .

(40)

The aliasing of spherical harmonics follows the Fourier rules in θ, and is similar to the reflective aliasing
in φ. It is not, however, true aliasing, because the undersampled function does not appear to be a single
lower frequency function, but rather as a linear combination of lower frequency functions. The inner product
(36) will integrate correctly as long as n + n′ < 2N . If n = N + k, then the inner products for n′ ≥ N − k
will be incorrect. When n+ n′ is odd, the odd symmetry will make the inner product correctly zero, but in
general the computed inner products will be nonsense.

3.3 Expansions and Evaluations

There are three basic things one does with Spherical Harmonics: expand into them, evaluate some operator
in them, and evaluate a series of them. The operator step depends on the problem you are dealing with,
so we will not consider it, beyond pointing out the diagonalization property in Section 1.4. In this section
we go through the algorithms for expanding in or evaluating a Spherical Harmonic series. First we give the
basic algorithm and then several improvements. We treat the expansion problem in detail, and then sketch
the (simpler) evaluation problem.

3.3.1 The Basic Expansion Algorithm

In the expansion problem for Spherical Harmonics we are given the sampled values f(φj , θk) of a function
of the form

f(φ, θ) =
∑
IN

αmn P̃
m
n (cosφ)

eimθ√
2π

. (41)

The samples are on a grid in φ× θ with 2N equispaced points in θ and N Gaussian nodes in cosφ:{
(φj , θk) =

(
cos−1(gNj ), 2π

k

2N

)
: j, k ∈ Z; 0 ≤ j < N, 0 ≤ k < 2N

}
. (42)

The coefficient indices are assumed to be in the set

IN = {(m,n) ∈ Z× Z : 0 ≤ n < N,−n ≤ m ≤ n} . (43)

From the O(N2) input values f(φj , θk) we wish to compute the O(N2) output values αmn in an efficient,
numerically stable way.



3 COMPUTING WITH SPHERICAL HARMONICS 12

For this expansion problem we have learned first that these Spherical Harmonics are an orthonormal set,
and so we should compute αmn by

αmn =

∫ π

0

∫ 2π

0

f(φ, θ)P̃mn (cosφ)
e−imθ√

2π
sinφdφdθ (44)

=

∫ π

0

(∫ 2π

0

f(φ, θ)
e−imθ√

2π
dθ

)
P̃mn (cosφ) sinφdφ. (45)

With our assumption (41) on the form of f , we only need be able to compute inner products of Pmn ’s (m
fixed).

Our next task is to discretize the integrals. The inner integral is a Fourier series expansion. With our
assumption (41) on the true nature of f , the sampling theorem says

f(φ, m̂) =

∫ 2π

0

f(φ, θ)
e−imθ√

2π
dθ =

2N−1∑
k=0

f(φ, θk)e−imθk
√

2π

2N
. (46)

For fixed m and n, n′ < N , P̃mn (cosφ)P̃mn′ (cosφ) = (sinφ)2mP̃
(m,m)
n−m (cosφ)P̃

(m,m)
n′−m (cosφ) = P (cosφ) is

a polynomial in cosφ of degree at most 2N − 2. Thus using Gaussian nodes and weights in cosφ, we can
perform this integral exactly using N points (see Section 3.2.1), to obtain

αmn =

∫ π

0

f(φ, m̂)P̃mn (cosφ) sinφdφ =

N−1∑
j=0

f(φj , m̂)P̃mn (cosφj) sinφjwN (j) . (47)

Remark 3. Instead of using the Gaussian nodes in (42) and weights in (47), one can use equispaced nodes
and their corresponding weights. One must use 2N points instead of N , however. Otherwise everything
works the same.

If we perform the double sum (integral) for each (m,n), we do O(N4) operations. As we noted in the
form of (45), however, the variables separate. Each of the inner integrals in (45) takes O(N2) to compute,
and there are O(N) or them, for cost O(N3). To compute the integral (47) costs O(N) operations, and we
must do this for O(N2) values for (m,n), so the cost for this step is also O(N3). The total cost is thus also
O(N3).

3.3.2 Improvement: Precompute the P̃mn s

The first step in making the basic algorithm efficient is to precompute as much as possible. If you are only
going to do one transform this will not help, but if you will do several transforms of the same size, this will
improve performance significantly. The things to precompute are the Gaussian nodes cos−1(gNj ) and weights

wNj , the values of P̃mn (gNj ), and possibly the measure sin(cos−1(gNj )) (this could be incorporated into wNj ).
For stability, one might wish to incorporate ‘half’ the measure onto the Associated Legendre functions

and store
√

sin(cos−1(gNj ))P̃mn (gNj ). This factor keeps the amplitude nearly constant (see Figures 1 and 2).

3.3.3 Improvement: Use the FFT in θ

The integral in (46) is a Fourier series expansion. The sum can be computed for each φ in O(N logN) time
with the Fast Fourier Transform (FFT), to yield f(φ, m̂). The cost for this step is reduced from O(N3) to
O(N2 logN), although the overall order of the algorithm is unchanged.
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3.3.4 Improvement: Use the Symmetry in φ

One property of P̃mn (cosφ) that is only apparent from its explicit construction in Section 3.1 is that it is
either even or odd across φ = π/2 as n−m is even or odd. We can perform the sum in (47) separately for
the even and odd components on φ ∈ (0, π/2) if we first perform simple reflections.

We construct the even portion of the function

fe(φj , m̂) = f(φj , m̂) + f(φN−1−j , m̂) (48)

for 0 ≤ j < N/2 and compute

αmn =

N/2−1∑
j=0

fe(φj , m̂)P̃mn (cosφj) sinφjwN (j) (49)

for m− n even. The odd portion is similar.
For fixed m, the computation of (47) took (N −m)N operations, but using these symmetries it takes

2(N/2) + 2((N −m)/2) = N + (N −m)N/2 operations, which is about half as many.

3.3.5 Fast Transforms

The algorithm so far has computational complexity O(N3). For large N this becomes unwieldy and there
is a call for a faster algorithm, analogous to the FFT. In [6] there is an algorithm with theoretical time
O(N2(logN)2) and a more practical algorithm with time O(N5/2). The O(N5/2) algorithm breaks even
with the algorithm described above at about N = 100, and cuts computational time by about three at
N = 512. For problems smaller than N = 512 it should not be considered, but for problems much larger
that N = 512 it can give significant cost savings. Software is available; search for “libftsh”.

3.3.6 The Evaluation Problem

We are given a set of coefficients {αmn }(m,n)∈IN and we form the sum

f(φ, θ) =
∑
IN

αmn P̃
m
n (cosφ)eimθ/

√
2π . (50)

This sum is evaluated on a grid in φ × θ with 2N equispaced points in θ and N Gaussian nodes in cosφ.
The evaluation problem for Spherical Harmonics is to compute the O(N2) output values f(φj , θk) from the
O(N2) input values αmn in an efficient, numerically stable way.

This sum could be evaluated directly, but the improvements in Sections 3.3.1 to 3.3.5 also apply.
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