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The wavefunction for the multiparticle Schrödinger equation is a function of many
variables and satisfies an antisymmetry condition, so it is natural to approximate it
as a sum of Slater determinants. Many current methods do so, but they impose
additional structural constraints on the determinants, such as orthogonality between
orbitals or an excitation pattern. We present a method without any such constraints,
by which we hope to obtain much more efficient expansions and insight into the
inherent structure of the wavefunction. We use an integral formulation of the prob-
lem, a Green’s function iteration, and a fitting procedure based on the computa-
tional paradigm of separated representations. The core procedure is the construction
and solution of a matrix-integral system derived from antisymmetric inner products
involving the potential operators. We show how to construct and solve this system
with computational complexity competitive with current methods. © 2008 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2873123�

I. INTRODUCTION

Given the difficulties in solving the multiparticle Schrödinger equation, current numerical
methods in quantum chemistry/physics are remarkably successful. Part of their success comes
from efficiencies gained by imposing structural constraints on the wavefunction to match physical
intuition. However, such methods scale poorly to high accuracy and are biased to only reveal
structures that were part of their own construction. Our goal is to develop a method that scales
well to high accuracy and allows an unbiased exploration of the structure of the wavefunction. In
this paper, we take a step toward this goal by developing a method to approximate the wavefunc-
tion as an unconstrained sum of Slater determinants.

Since the multiparticle fermionic wavefunction is an antisymmetric function of many vari-
ables, it is natural to approximate it as a sum of Slater determinants, at least as a first step.
Motivated by the physical intuition that electrons may be excited into higher energy states, the
configuration interaction �CI� family of methods chooses a set of determinants with predetermined
orbitals and then optimizes the coefficients used to combine them. When it is found insufficient,
methods to optimize the orbitals, work with multiple reference states, etc., are introduced �along
with an alphabet of acronyms�. A common feature of all these methods is that they impose some
structural constraints on the Slater determinants, such as orthogonality of orbitals or an excitation
pattern. As the requested accuracy increases, these structural constraints trigger an explosion in the
number of determinants used, making the computation intractable for high accuracy.

The a priori structural constraints present in CI-like methods also force the wavefunction to
comply with such structure, whether or not it really is the case. For example, if you use a method
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that approximates the wavefunction as a linear combination of a reference state and excited states,
you could not learn that the wavefunction is better approximated as a linear combination of several
nonorthogonal, near-reference states. Thus, the choice of numerical method is not just a compu-
tational issue; it can help or hinder our understanding of the wavefunction.

For these reasons, our goal is to construct an adaptive numerical method without imposing a
priori structural constraints besides that of antisymmetry. In this paper, we derive and present an
algorithm for approximating a wavefunction with an unconstrained sum of Slater determinants,
with fully adaptive single-electron functions. In particular, we discard the notions of reference
state and excitation of orbitals. The functions comprising the Slater determinants need not come
from a particular basis set, be orthogonal, or follow some excitation pattern. They are computed so
as to optimize the overall representation. In this respect, we follow the philosophy of separated
representations,7,6 which allow surprisingly accurate expansions with remarkably few terms.

Our construction generates a solution using an iterative procedure based on nonlinear approxi-
mations via separated representations. To accomplish this nonlinear approximation, we derive a
system of integral equations that describe the fully correlated many-particle problem. The com-
putational core of the method is the repeated construction and solution of a matrix-integral system
of equations.

Specifically, our approach has the following distinctive features:

• We use an adaptive representation for single-electron functions, but our method does not
depend on its details.

• We use an integral formulation of the multiparticle Schrödinger equation and a Green’s
function iteration to converge to the ground-state wavefunction. The Green’s function is
decomposed and applied using separated approximations obtained by expanding the kernel
into Gaussians.

• We use a variant of the so-called alternating least-squares algorithm to reduce the error of our
approximation using a sum of a given number of Slater determinants.

• We compute antisymmetric inner products involving portions of the Hamiltonian operator by
reducing them to formulas involving only combinations of standard integrals. In particular,
we avoid the direct application of the electron-electron potential and instead compute con-
volutions with the Poisson kernel.

By doing this, we hope to represent the effects of correlations in the most natural and concise
way possible, thus providing both computational efficiency and physical insight. We believe that
this algorithm and the system of integral equations underlying it provide the foundation for a new
approach to solving the multiparticle Schrödinger equation. We defer to the sequels several im-
portant issues, such as algorithmic size consistency/extensivity and the treatment of the interelec-
tron cusp.

In Sec. II, we formulate the problem more carefully, make precise some of the statements that
we made in this introduction, and give a high-level description of the method. We then present the
derivations and proofs in the following sections.

II. PROBLEM FORMULATION AND DESCRIPTION OF THE METHOD

A. Formulation of the problem

We consider the time-independent, nonrelativistic, multiparticle Schrödinger equation and fix
the nuclei according to the Born–Oppenheimer approximation, so the equation describes the
steady state of an interacting system of electrons. For each of the N electrons in the system, there
are three spatial variables r= �x ,y ,z� and a discrete spin variable � taking the values �− 1

2 , 1
2
�,

which we combine and denote �r ,�� by �. The Hamiltonian operator H is a sum of a kinetic
energy operator T, a nuclear potential operator V, and an electron-electron interaction operator W,
defined in atomic units by
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H = T + V + W = −
1

2�
i=1

N

�i + �
i=1

N

v�ri� +
1

2�
i=1

N

�
j�i

N
1

�ri − r j�
, �1�

where �i is the three-dimensional Laplacian acting in the variable ri and v�r� is a sum of terms of
the form −Za / �r−Ra� from a nucleus at position Ra with charge Za. The antisymmetric eigen-
functions of H represent electronic states of the system and are called wavefunctions. Antisym-
metric means that under the exchange of any two coordinates, the wavefunction is odd, e.g.,
���2 ,�1 , . . . �=−���1 ,�2 , . . . �. The bound-state wavefunctions have negative eigenvalues and are
of greatest interest. We will focus on the ground-state wavefunction, which has the most negative
eigenvalue, although the techniques can be used for other states. In summary, our goal is to find E
and �, with E the most negative eigenvalue in

H� = E� , �2�

subject to the antisymmetry condition on �. Analytic methods can give qualitative results about
the solutions and determine limiting cases, but most quantitative results must be obtained numeri-
cally. Although the equation is “just” an eigenvalue problem, its numerical solution presents
several serious difficulties, among them the large number of variables and the antisymmetry
condition on the solution. The simplest method that addresses these two difficulties is Hartree–
Fock �HF� �see, e.g., Ref. 31�, which uses the antisymmetrization of a single product, called a
Slater determinant, to approximate the N-particle wavefunction, i.e.,

�HF = A	
i=1

N

�i��i� =
1

N!

�1��1� �1��2� ¯ �1��N�
�2��1� �2��2� ¯ �2��N�

] ] ]

�N��1� �N��2� ¯ �N��N�

 . �3�

Any antisymmetric approximation �̃ to the wavefunction � can be substituted into

�H�̃,�̃�

��̃,�̃�
, �4�

where �·,·� is the usual inner product, to obtain an estimate for E. This estimate gives an upper
bound on the lowest value of E that solves �2�. Substituting �3� into �4�, one can iteratively solve
for �i to minimize �4�. The resulting �HF will best approximate � in the sense of providing the
best estimate �4�.

To improve upon HF, it is natural to consider the antisymmetrization of a sum of products:

��r� = A�
l=1

r

sl	
i=1

N

�i
l��i� , �5�

which could also be written as a sum of Slater determinants. The coefficients sl are introduced in
order to have ��i

l�=1. Many methods are based on this form, but they use it in different ways. The
CI method �see, e.g., Ref. 58� chooses the functions �i

l from a preselected master set of orthogonal
functions and decides on a large number r of combinations to consider based on excitation level.
Substituting �5� into �4� leads to a matrix eigenvalue problem that can be solved for the scalar
coefficients sl. The multiconfiguration self-consistent field method �e.g., Refs. 22 and 12� solves
for the master set of orthogonal functions as well as the scalar coefficients. There are numerous
variations and combinations of these methods, too many to describe here.
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1. What is new here

In this work, we construct and demonstrate a method that also uses a wavefunction of the
form �5� but without constraints on the �i

l. We remove both structural constraints, such as an
excitation pattern or orthogonality between single-electron functions, and representation con-
straints, such as those imposed by using a predetermined basis set.

Many methods �e.g., Refs. 56, 48, 40, 2, 21, 18, 20, 3, 17, 61, and 42� have loosened the
constraints on the Slater determinants in one way or another, often with encouraging results. These
works, however, only partially removed the constraints, and so, we claim, did not achieve the full
potential of an unconstrained approximation. By removing these constraints, we hope to produce
much better approximations at much smaller separation rank r than existing methods allow. We
also hope to provide a new perspective from which to analyze and understand the wavefunction,
free from the biases that physical intuition imposes.

Our hopes are based on our work in Refs. 6, 7, and 44 where we developed general methods
to represent and compute with functions and operators in many dimensions. We used sums of
separable functions, dubbed separated representations, similar to �5�. We found rather natural
examples where removing constraints produces expansions that are exponentially more efficient,
i.e., r=N instead of 2N or r=log N instead of N. For example, in our approach we can have a
two-term representation:

� = A	
i=1

N

�i��i� + A	
i=1

N

��i��i� + �i+N��i�� , �6�

where �� j� j=1
2N form an orthogonal set. To represent the same function as �6� while imposing the

constraint that factors come from a master orthogonal set would force one to multiply out the
second term, and thus use a representation with 2N terms.

At present, we have no proof that the wavefunction is well approximated by a structure that
would benefit from the removal of constraints. The size r needed in practice and how it depends
on the various parameters in the problem are thus still open questions. In Refs. 7, 6, and 44 the
most interesting examples came from “reverse engineering” the numerical results to obtain for-
mulas and proofs. We therefore expect that the tools we provide here will allow an exploration of
the wavefunction, perhaps revealing an unexpected structure, and a strategy for a proof.

B. Description of the algorithm

The removal of constraints in �5�, and thus the basis sets, coefficients, and other structures that
went along with them, also eliminates the conventional strategies for constructing �5� to minimize
�4�. It leads one to consider how one would compute the ground-state wavefunction if its numeri-
cal representation were not an issue. We choose to use an integral iteration, which we sketch in
Sec. II B 1. In Appendix A, we sketch an alternative iteration based on gradient descent.

To use the form �5�, we must choose some value of r, which determines the quality of the
approximation. In Section II B 2, we show how to incorporate a nonlinear fitting step within the
integral iteration in order to maintain fixed r. Accomplishing this fitting requires a significant
amount of machinery, which makes up the body of the paper. Eventually, one would want to
adaptively determine r, but we do not address that issue here.

1. A Green’s function iteration

The eigenvalue equation �2� contains the differential operator H, which has both the discrete
negative eigenvalue�s� that we are interested in and unbounded, continuous, positive spectrum. In
Refs. 33 and 34, this differential equation was reformulated as an integral equation. An iteration
based on the integral formulation with Green’s functions was also introduced in Refs. 33 and 34
and used in, e.g., Refs. 13 and 29.

In this section, we review this iteration, formulated at the continuous level. The actual imple-
mentation of the algorithm differs from this continuous formulation in three ways. First, and most
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importantly, in Sec. II B 2, we modify the iteration to preserve our wavefunction representation
�5�. Second, we approximate the Green’s function using Gaussians to some fixed but arbitrary
accuracy in operator norm �Sec. V A�. Third, we delegate the task of representing and operating
on functions of the single-electron variable � to an adaptive numerical method �see Ref. 5� with its
own accuracy control. We note that an alternative to Ref. 5 may be used for this purpose as long
as it is adaptive and has controlled accuracy. In this paper, we do not address some technical
issues, such as finding a good initial guess or determining stopping criteria.

Define the Green’s function

G� = �T − �I�−1 �7�

for ��0 and consider the Lippmann–Schwinger integral equation

���� = − G���V + W���� . �8�

The subscript � on �� and �� are to emphasize the dependence of the eigenvalues and eigenfunc-
tions on �. The operator G���V+W�� is bounded �see Refs. 35, 55, and 53� but without additional
assumptions, it is not compact �see Ref. 54 Sec. XIII 5�. Since we are interested in a bound state,
we assume that the operators act on a bounded domain, as is justified by the exponential decay of
the wavefunction.1 Under this assumption, G���V+W�� is compact, so �8� has only a discrete
spectrum.

If �=E, then there is an eigenvalue ��=1 and the corresponding eigenfunction �� of �8� is the
desired ground-state eigenfunction of �2�, as one can see by rearranging �8� into �2�. One can show
that ��=1 is the largest eigenvalue �see Ref. 45�, so a simple iteration such as the power method
yields the desired ground-state eigenfunction.

The eigenvalues �� depend analytically on �, so when � is sufficiently close to E, the power
method will still yield an eigenfunction of �8� with energy near the minimum of �4�. The conver-
gence rate of the power method to produce �� and �� is linear, and depends, as usual, on the gap
between the eigenvalues in �8�. From �� and ��, one can then compute an improved estimate �
for E. In the practical use of this approach, one does not wait for the power method to converge
at each step but instead intertwines it with the update of �. Beginning with an approximation to
the energy �0E and an approximate wavefunction �0, one converts �8� to an iteration

�̃n = − G�n
��V + W��n� . �9�

After each iteration, one normalizes by setting

�n+1 = �̃n/��̃n� . �10�

Following the approach of Ref. 29, we can use the update rule

�n+1 = �n − ��V + W��n,�n − �̃n�/��̃n�2. �11�

Remark 1: An eigenfunction of �8� is an eigenfunction of �2� only when � is an eigenvalue of
�2� and the eigenfunction of �8� has eigenvalue �=1. To obtain the next eigenfunction of �2� above
the ground state, it appears that one needs to compute the first two eigenfunctions of �8�, the first
with eigenvalue �	1 and the second with eigenvalue �=1. We will develop such deflation
procedure elsewhere.

2. Approximating with fixed separation rank r

We restrict the method to approximate wavefunctions of the form �5�, with r fixed, by replac-

ing the definition of �̃n in �9�. We would like to redefine �̃n to be the function of the form �5� that
minimizes the �least-squares� error
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��̃n − �− G�n
��V + W��n��� . �12�

In general, such minimization problems may be ill posed in the sense that the infimum may occur
at a limit point �see Ref. 16 and the references therein�. In Ref. 6, we describe a method to balance
the least-squares error with the loss-of-precision error due to a large condition number, so that the
problem becomes well posed. However, even then, there are no known algorithms that assure
convergence to the global minimum. Instead, we settle for an algorithm that, at each iteration,

constructs a �̃n with lower value of �12�, unless it is already at a minimum.
Since fitting using �12� instead of directly using �9� introduces an error, the update rule �11�

may no longer give a quadratic convergence and, in any case, is not expected to converge to the
true energy. One may choose to replace the update rule �11� with the more robust but slower
converging rule

�n+1 =
�H�n+1,�n+1�

��n+1�2 , �13�

which is based on �4�. Other rules may be possible as well. At present, we do not have enough
numerical experience to decide which rule to prefer.

The Green’s function iteration itself does not enforce the antisymmetry condition. In order to
assure convergence to an antisymmetric solution, we use the pseudonorm induced by the pseudo-
inner-product �· , · �A= �A�·� ,A�·��, as we did in Ref. 6.

We now describe our algorithm for constructing �̃n of the form �5� to reduce, in an attempt to
minimize, the least-squares error �12�. To simplify notation in the description of our method, we
now suppress the index n in �12� and consider a single problem of that form. We begin by setting

�̃=� and then iteratively improve �̃ to reduce �12�. Although we can see several strategies for

improving �̃, for concreteness, we will restrict our description to the strategy most similar to Ref.

6. To improve the approximation �̃, we loop through the variables �electrons�. The functions in
variables other than the current variable are fixed, and the functions in the current variable are
modified to minimize the overall error �12�. The error �12� depends linearly on the functions in a
single variable, so the minimization becomes much easier. This general alternating least-squares
approach is well known �see, e.g., Refs. 30, 38, 39, 11, 15, and 59�. Although one could loop
through the variables multiple times to try to minimize �12�, it appears to be more cost effective
to loop only once and then do the next Green’s function iteration. We alternate through the
directions, but for ease of exposition, we describe the k=1 case. So, �̃k

l is fixed for k	1, and we
will solve for the values of �̃1

l for all l.
To refine in the current variable, we set up and solve a linear least-squares problem. The

normal equations for a least-squares problem are derived by taking a gradient with respect to the
free parameters and setting the result equal to zero. As long as the approximating function is linear
and not degenerate in these parameters, the resulting equations are linear and have a unique
solution, which minimizes the error with respect to these parameters. Usually, these free param-
eters are coefficients of the representation in some fixed basis. For example, to find the coefficients
�ci� to minimize

� f − �
i

cigi�2
= � f − �

i

cigi, f − �
i

cigi� , �14�

construct the normal equations

Ax = b , �15�

with
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A�k,i� = �gk,gi� and b�k� = �gk, f� , �16�

solve them, and set ci=x�i�. Instead of using coefficients in some basis as our parameters, we take
the parameters to be the point values of our functions �̃1

l , so that the gradient becomes a varia-
tional derivative. Formally, we consider a basis of delta functions 
��− · � and let their coefficients
be our parameters. We still obtain linear normal equations �15�, but now b and x are vectors of
functions, and A is a matrix of integral operators. Specifically, b�l� is a function of �, x�l�� is a
function of ��, and A�l , l�� is an integral operator mapping functions of �� to functions of �. The
kernels in A are formally defined by

A�l,l����,��� = s̃ls̃l��
�� − �1�	
i=2

N

�̃i
l��i�,
��� − �1�	

i=2

N

�̃i
l���i��

A
, �17�

and the functions in b are defined by

b�l���� = s̃l�
m

r

sm�
�� − �1�	
i=2

N

�̃i
l��i�,− G��V + W�	

i=1

N

�i
m��i��

A
. �18�

Once we solve �15�, we set �̃1
l =x�l�. To enforce the normalization convention ��̃1

l �=1, we can
divide �̃1

l by its norm and incorporate the norm into s̃l.
To solve the matrix-integral system �15�, we need an iterative method for solving linear

systems that uses only operations compatible with integral operators, such as matrix-vector prod-
ucts, vector scales and additions, and vector inner products. Typically, the matrix A in normal
equations is positive definite. Our operator A is only semidefinite due to the null space in the
antisymmetric pseudonorm. Fortunately, b was computed with the same pseudonorm and has no
component in the null space of A, so we can still use methods for positive-definite matrices. Based
on these considerations, we choose to use the conjugate gradient iterative method �see, e.g., Ref.
23� to solve �15�. One initializes with r=b−Ax, v=r, and c= �r ,r�, and then the core of the
method is the sequence of assignments z←Av, t←c / �v ,z�, x←x+ tv, r←r− tz, d← �r ,r�, v
←r+ �d /c�v, and c←d, applied iteratively.

One advantage of using this iterative method with integral operators is that our algorithm does
not rely on any particular basis. The representation of x can naturally be adaptive in �, for
example, refining near the nuclei as indicated by the refinement in b. We assume the availability
of some adaptive, high-accuracy representation for single-electron functions, such as the polyno-
mial multiwavelet representation demonstrated in Refs. 28 and 29, which effectively eliminates
the basis-set error. For the estimates of computational cost, we use M to denote the cost to
represent a function of � or integrate such a function. The antisymmetry constraint requires N
�M, and in general, we expect M to be much larger than N.

3. Summary of the remainder of the paper

The core of the paper is the development of the methods needed to construct A in �17� and b
in �18�. First, in Sec. III, we develop the machinery and algorithms for computing antisymmetric
inner products involving the operators T, V, and W. Our formulation uses low-rank perturbations
of matrices, thus avoiding cofactor expansions. We also avoid explicit construction of W by
incorporating its effect via spatial convolutions with the Poisson kernel in three dimensions.
Second, in Sec. IV, we show how to compute antisymmetric inner products involving these
operators and the delta function 
��−�1�. Again, the key is to use low-rank perturbations of
matrices.

In Sec. V, we assemble all our tools to demonstrate how to perform our main algorithm and,
in particular, how to construct A in �17� and b in �18�. We also gather the computational cost for
the whole method. This cost depends on the following parameters:

• N, the number of electrons.
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• r, the separation rank used in �5�.
• M, the cost to represent a function of �, as discussed in Sec. II B 2.
• MP, the cost to convolve a function of � with the Poisson kernel 1 / �r�. A Fourier-based

Poisson solver on a uniform grid would achieve M log M. For adaptive methods such as that
we used, MP may be considered proportional to M log M as well, but since the complexity
depends on the type of function to which the operator is applied, the estimate of the cost is
complicated �see the discussion in Refs. 5 and 19�.

• I, the number of Green’s function iterations, as discussed in Sec. II B 1. If we used more than
one alternating least-squares pass �Sec. II B 2� per iteration, then I would include a factor of
the number of passes.

• S, the number of conjugate gradient iterations used to solve the system in Sec. II B 2. Al-
though S in theory could be as many as the number of degrees of freedom rM, we generally
have a very good starting point and so expect only a very small number to be needed.

• L, the number of terms used to approximate the Green’s function to relative error � with
Gaussians. In Sec. V A, we prove that L=O��ln ��2� independent of � and N.

In terms of these parameters, the cost to store the representation �5� is

O�rNM� �19�

and the computational cost to perform the algorithm is

O�Ir2N2�L�N + MP� + S�N + M��� . �20�

For comparison, the cost to evaluate a single antisymmetric inner product via Löwdin’s rules is
O�N2�N+M��.

C. Further considerations

We have implemented the method developed here and tested it sufficiently to verify the
correctness of the algorithm as presented. The numerical results are too preliminary to allow us to
make any particular claims at this point, however, so we will present them separately. The linear
algebra accelerations based on Appendix B have not yet been implemented.

We develop the method in terms of the total variable � without specifying the spin states. If a
specific spin state is imposed on our initial trial wavefunction �0, the iteration will preserve this
state.

The representation �5� does not account for the interelectron cusp �see, e.g., Refs. 57, 47, 37,
50, 51, 36, and 27�, and thus we cannot hope to achieve a small error � in the wavefunction with
small r. As with CI methods, we may still be able to achieve a small error in the energy difference
of two systems, which is often the quantity of interest in chemistry. For the current work, we fix
r and adapt �i

l��i� and sl to minimize the error � rather than fix � and adaptively determine r. We
are developing an extension to �5� that incorporates the cusp and hope to achieve a small error �
through it.

Similarly, �5� is not size consistent/extensive. For example, if one applied it to a long line of
identical, noninteracting subsystems, then r is expected to grow exponentially in the number of
subsystems. We are developing a hierarchical extension to �5� suitable for such extended systems
and hope to achieve linear scaling through it.

Although we have focused on the multiparticle Schrödinger equation, the tools that we have
developed are another step toward general-purpose, automatically adaptive methods for solving
high-dimensional problems.
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III. ANTISYMMETRIC INNER PRODUCTS

In this section, we develop methods for computing antisymmetric inner products involving W,
V, and T. For this purpose, after setting notation, we develop methods for computing with low-
rank perturbations of matrices, review the antisymmetry constraint, and define a notion of maxi-
mum coincidence. With these, tools we then derive the main formulas.

A. Notation

We denote a column vector with suppressed indices by F and with explicit indices by F�i�. We
denote its conjugate transpose by F*. We use ei to denote the column vector that is 1 in coordinate
i and zero otherwise. A linear operator is written L. We denote a matrix with suppressed indices
by L and with explicit indices by L�i , j�. Recalling that r= �x ,y ,z��R3, we combine spatial
integration with summation over spins and define the integral

� f���d� = �
���−1/2,1/2�

� f�r,��dr . �21�

We define the action of the single-electron kinetic and nuclear potential operators by

�T* + V*��f���� = �− 1
2� + v�r�� f��� = �− 1

2� + v�r�� f�r,�� . �22�

In what follows, we will reduce the action of the interelectron potential operator W to convolu-
tions with the Poisson kernel, so we define

WP�f��r� =� 1

�r − r��
f����d�� = �

����−1/2,1/2�
� 1

�r − r��
f�r�,���dr�. �23�

We allow these operators to be applied componentwise to vectors and matrices of functions.

Next, we define =	i=1
N �i��i�, so, for example, we can write �̃ ,�A instead of

�	i=1
N �̃i��i� ,	i=1

N �i��i��A. We also associate with the product  a vector of N functions of a single
variable,

� = �
�1

�2

]

�N

� . �24�

We can then, for example, construct a new vector of functions � by applying a matrix to an old

one, as in �=L−1�̃. Although we do linear algebra operations on these vectors, we note that �

+�̃ does not correspond to +̃, so there is not a true vector-space structure. Our formulas
contain fairly complicated expressions with such vectors, such as ��*WP���*��d�. To parse
this expression, we note that � is a column vector of functions and �* is a row vector of
functions, so ��* is a matrix of functions. Then, WP���*� is still a matrix of functions but
applying �* on the left and � on the right yields a single function, which is integrated in the
implied variable � to yield a number. When explicit specification of the variable involved is
needed, the notation ���� indicates that the single variable � is used in all the functions.

B. Determinants of low-rank perturbations of matrices

Since the antisymmetric inner product involves determinants, we will use some linear algebra
relations for them. Proposition 3 in this section is used heavily and is the key to avoiding rather
unpleasant cofactor expansions.

Proposition 2 (determinant via Schur complement): Let A be a nonsingular square matrix, D
a square matrix, and B and C matrices of appropriate size. Then,
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�A B

C D
� = �A��D − CA−1B� . �25�

Proof: �See, e.g., Ref. 52� It is easy to verify directly that

�A B

C D� = � I 0

CA−1 I
��A 0

0 D − CA−1B
�� I A−1B

0 I
� . �26�

Since the determinants of the first and third matrices are equal to 1, the determinant of the middle
matrix gives the desired result. �

Proposition 3 (determinant of a perturbation of the identity): Let �uq�q=1
Q and �vq�q=1

Q be two
sets of vectors of the same length, and uqv

q
* denote the outer product of uq and vq. Then,

�I + �
q=1

Q

uqv
q
*� = 


1 + v1
*u1 v1

*u2 ¯ v1
*uQ

v2
*u1 1 + v2

*u2 ¯ v2
*uQ

] ] � ]

v
Q
*u1 v

Q
*u2 ¯ 1 + v

Q
*uQ


 . �27�

Proof: Let U be the matrix with the vectors �uq� as its columns and V the matrix with the
vectors �vq� as its columns. Note that U and V are of the same size. By Proposition 2, we have

� I U

− V* I
� = �I + V*U� , �28�

which evaluates to the right side of �27�. Exchanging the roles of A and D in Proposition 2, we
have

� I U

− V* I
� = �I + UV*� , �29�

which evaluates to the left side of �27�. �

The Q=1 case is well known �see, e.g., Ref. 52� but we have not found the general case in the
literature.

C. The modified pseudoinverse

The singular value decomposition �SVD� �e.g., Ref. 23� of a N�N matrix is

A = �
i=1

N

siuivi
* = USV*, �30�

where the matrices U and V are unitary and the singular values �si� are non-negative and in
descending order. The left singular vectors �ui� form an orthonormal set, as do the right singular
vectors �vi�. The pseudoinverse is defined as

A† = �
i=1

N−Q

si
−1viui

*, �31�

where Q is the dimension of the �numerical� null space. We also define a projection matrix onto
the null space.

Definition 4:
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A� = �
i=N−Q+1

N

viui
*. �32�

For a modified pseudoinverse, we have the following.
Definition 5 (modified pseudoinverse):

A‡ = A† + A�. �33�

Note that A�, and thus A‡, is not uniquely defined since the choice of basis for the null space is
not unique. For our purposes, any consistent choice works. The modified pseudoinverse behaves
much like the pseudoinverse but always has a nonzero determinant,

�A‡� = ��U��V*� 	
si�0

si�−1
� 0. �34�

D. The antisymmetrizer and Löwdin’s rule

Given a separable function, its antisymmetric projection can be found by applying the anti-
symmetrizer A �see, e.g., Ref. 49�, also called the skew symmetrization or alternation �see, e.g.,
Refs. 46 and 52�, resulting in a Slater determinant. In the vector notation �24�, we have

A =
1

N!
�����1� ¯ ���N��� =

1

N!

�1��1� �1��2� ¯ �1��N�
�2��1� �2��2� ¯ �2��N�

] ] � ]

�N��1� �N��2� ¯ �N��N�

 . �35�

One cannot explicitly form a Slater determinant A for large N since it would have N! terms.
However, one can compute the antisymmetric pseudo-inner-product

�̃,�A =
def

�Ã,A� = �̃,A� = �Ã,� , �36�

where the first equality is a definition and the others follow since A is an orthogonal projector. It
is not a true inner product because it has a null space. To compute �36�, first construct the matrix
L with entries

L�i, j� = ��̃i,� j� �37�

at cost O�N2M�. Then use �̃ ,�A= �Ã ,� and move the integrals inside the determinant to
obtain

�̃,�A =
1

N!
�L� , �38�

which is the so-called Löwdin’s rule �e.g., Refs. 41 and 49�. Since L is an ordinary matrix, its
determinant can be computed with cost O�N3� �or less�. The denominator N! need never be
computed, since it will occur in every term in our equations and so cancels.

Our method for enforcing the antisymmetry constraint, as described in Ref. 6, is to use the
pseudonorm based on the antisymmetric inner product �· , · �A for the least-squares fitting �12�.

E. Maximum coincidence

Consider two products, =	i=1
N �i��i� and ̃=	i=1

N �̃i��i�, stored in the vector notation of �24�
as � and �̃. To specify which functions were used to compute L in �37�, we use the notation

L�̃ ,�. The matrix of inner products L=L�̃ ,� is in general full. Defining
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� = L−1�̃ , �39�

we have

A� =
1

N!
���L−1�̃���1� ¯ �L−1�̃���N��� = �L−1�

1

N!
���̃��1� ¯ �̃��N��� = �L−1�Ã . �40�

Thus, the antisymmetrizations of ̃ and � are the same up to a constant, and we can use � instead

of ̃ in calculations. The advantage of using � is that the resulting matrix of inner products L̂
=L�� ,�= I; in other words, we have the biorthogonality property ��i ,� j�=
ij. To show this,

write the matrix L̂ as ���*d�, where the integration is elementwise. Substituting for �, we have

��L−1�̃��*d�. Since the integration is elementwise, it commutes with L−1 and we have

L−1��̃�*d�=L−1L= I. The computational cost to construct � is O�N2�N+M��.
When the matrix L in �37� is singular, we define �=L‡�̃ using the modified pseudoinverse of

Definition 5. By the same argument as before, we have �L‡�−1A�=Ã. The matrix ���*d�
evaluates to L‡L= I−�i=N−Q+1

N vivi
*. For notational convenience in later sections, we will reindex

our singular values and vectors so that the first Q generates the null space rather than the last Q.

Remark 6: Within CI methods, the functions in � and �̃ are taken from a master set of

orthonormal functions, and � is simply a signed permutation of �̃ so that � j =� j for as many j as
possible. This is known as the “maximum coincidence” ordering. The construction we use gener-
alizes this notion.

F. Antisymmetric inner product with the electron-electron potential W present

In this section, we derive formulas for computing antisymmetric inner products that include
the electron-electron interaction potential. Although the derivation is somewhat messy, the result-
ing formulas are rather clean, and we use them verbatim in the computations. The main ideas are
given in this section and then reused in later sections for other cases.

Proposition 7: When L from (37) is nonsingular,

�̃,W�A =
def�A	

j=1

N

�̃ j�� j�,�1

2�
i�j

1

�ri − r j�
�	

j=1

N

� j�� j�� �41�

is equal to

1

2

�L�
N!
� �*�WP��*�� − �*WP���*��d� , �42�

where �=L−1�̃.
Proof: Using the maximum coincidence procedure in Sec. III E, �41� is equal to �L��� ,W�A.

We reorganize and find that we must compute

1

2

�L�
N!
� ��

i�j

1

�ri − r j�
�	

j=1

N

�̄ j�� j�

�1��1� �1��2� ¯ �1��N�
�2��1� �2��2� ¯ �2��N�
] ] � ]

�N��1� �N��2� ¯ �N��N�

d�1 ¯ d�N. �43�

By moving the sum outside of the integral, we can integrate in all directions except �i and � j.
Using ��m ,�n�=
mn, we obtain
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1

2

�L�
N! �i�j

� 1

�r − r��

1 ¯ �̄i����1��� ¯ �̄ j�����1���� ¯ 0

] � ] ] ]

0 ¯ �̄i����i��� ¯ �̄ j�����i���� ¯ 0

] ] � ] ]

0 ¯ �̄i���� j��� ¯ �̄ j����� j���� ¯ 0

] ] ] � ]

0 ¯ �̄i����N��� ¯ �̄ j�����N���� ¯ 1


d�d��

=
1

2

�L�
N! �i�j

� 1

�r − r��
�I + ��̄i������� − ei�ei

* + ��̄ j��������� − e j�e j
*�d�d��. �44�

Since the inner matrix is a low-rank perturbation of the identity, we reduce its determinant using
Proposition 3 and obtain

1

2

�L�
N! �i�j

� 1

�r − r��
�̄i����̄ j������i��� �i����

� j��� � j����
�d�d��. �45�

The determinant is zero if j= i, so we do not need to explicitly prohibit it as we needed to in �44�
and above. The antisymmetrization has caused a convenient cancellation of a fictitious self-
interaction, and thus allowed us to decouple the two sums. Expanding out the determinant and
rearranging the terms, we obtain

1

2

�L�
N!
� ��

i

�̄i����i������ 1

�r − r����j

�̄ j����� j�����d���d�

−
1

2

�L�
N!
� �

i
�

j

�̄i���� j����� 1

�r − r��
�̄ j�����i����d���d� . �46�

In our compact notation, this yields �42�. �

We now consider the computational cost of �42�. In the first term in �42�, computing �*�
costs O�NM�, applying WP�·� to it costs O�MP�, and the integral in � costs O�M�. In the second
term, ��* costs O�N2M�, applying WP�·� to it costs O�N2MP�, applying �* and then � costs
O�N2M�, and then the integral in � costs O�M�. Including the cost to construct �, our total cost
is O�N2�N+MP��.

1. The singular case

In this section, we investigate the case when the matrix L from �37� is singular. Inserting the

definition �=L−1�̃ into our main formula �42�, we have

1

2

�L�
N!
� �*L−1�̃WP��*L−1�̃� − �*WP�L−1�̃�*�L−1�̃d� . �47�

In terms of the SVD �30�, we can express

L−1 = �
j=1

N

sj
−1v ju j

* and �L� = �U��V*�	
i

si. �48�

Inserting these expressions into �47�, we have
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1

2

�U��V*�	
i

si

N!
� �*�

j=1

N

sj
−1v ju j

*�̃WP��*�
k=1

N

sk
−1vkuk

*�̃�
− �*WP��

j=1

N

sj
−1v ju j

*�̃�*��
k=1

N

sk
−1vkuk

*�̃d�

=
1

2

�U��V*�
N! �

j=1

N

�
k=1

N

	
i�j,k

si� �*v ju j
*�̃WP��*vkuk

*�̃� − �*v jWP�u
j
*�̃�*vk�uk

*�̃d� .

�49�

If L is singular, then at least one si is zero, and only terms that exclude those from the product in
�49� are nonzero. Since we exclude two indices in the product, if more than two si are zero, then
the entire inner product is zero. If exactly two are zero, then only one term in the sum survives. If
exactly one is zero, then we can simplify from a double to a single sum using symmetry. Recalling
the modified pseudoinverse from Definition 5 and sorting the zero si to the beginning for nota-
tional convenience, we obtain the following propositions.

Proposition 8: When the rank deficiency of L is more than 2, the antisymmetric inner product
(41) evaluates to zero.

Proposition 9: When the rank deficiency of L is equal to 2, the antisymmetric inner product
(41) is equal to

1

�L‡�N!
� �*v1u1

*�̃WP��*v2u2
*�̃� − �*v1WP��*v2u1

*�̃�u2
*�̃d� . �50�

Proposition 10: When the rank deficiency of L is equal to 1, defining �=L†�̃ or �=L‡�̃, the
antisymmetric inner product (41) is equal to

1

�L‡�N!
� �*v1u1

*�̃WP��*�� − �*v1WP�u1
*�̃�*��d� . �51�

In computing �50�, constructing �*v1, �*v2, u
1
*�̃, and u

2
*�̃ costs O�NM�, applying WP�·�

costs O�MP� and, finally, the integral in � costs O�M�. In computing �51�, the first term costs
O�NM� to form �*�, O�MP� to apply WP�·�, and O�M� to integrate in �. The second term costs

O�NM� to form u
1
*�̃�, O�NMP� to apply WP�·�, O�NM� to apply �, and O�M� to integrate in

�. In total, the computational cost for the singular cases is less than the cost of the nonsingular
case.

Remark 11: In the CI context, rank deficiency 2 corresponds to a double excitation. The
vectors ui and vi would be zero except for a single entry, and so select the locations of the excited

electrons out of � and �̃. Proposition 9 then reduces to the Slater–Condon rules.14

G. Antisymmetric inner product with T and/or V present

Since T and V both have the structure of a sum of one-directional operators, we state the
formulas for their sum, although of course they can be treated individually.

Proposition 12: If L from (37) is nonsingular,

�̃,�T + V��A =
def�A	

j=1

N

�̃ j�� j�,��
i

−
1

2
�i + v�ri��	

j=1

N

� j�� j�� �52�

is equal to

�L�
N!
� �T* + V*����*�d� . �53�
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Proof: We follow the same procedure as we used for the electron-electron operator W in Sec.
III F. Instead of �44�, we have the simpler expression

�L�
N! �i

� �I + ��T* + V*���̄i�������� − ei�ei
*�d� . �54�

Applying Proposition 3, we obtain �53�. �

To analyze the computational cost to compute �53�, we note that it costs O�NM� to apply
�T*+V*��·�. Including the cost for the maximum coincidence transformation, our total cost is thus
O�N2�N+M��.

1. The Singular Case

We now state the formula when L is singular. The analysis is similar to that for W in Sec.
III F 1.

Proposition 13: If the rank deficiency of L is greater than 1, (52) evaluates to zero. If it is
equal to 1, we have

1

�L‡�N!
� �T* + V*���*v1�u1

*�̃d� . �55�

To compute �55�, it costs O�NM� to form �*v1 and u
1
*�̃, and O�M� to apply �T*+V*��·�.

IV. INCORPORATING DELTA FUNCTIONS INTO THE ANTISYMMETRIC INNER
PRODUCTS

In this section, we show how to compute antisymmetric inner products when one of the
component functions is replaced by a delta function. For concreteness, we will replace �̃1��1� by

��−�1�.

A. Löwdin’s rule with �„�−�1… present

The matrix L from �37� is defined by L�i , j�= ��̃i ,� j�. If we replace �̃1��1� by 
��−�1�, then
the first row depends on � and is given by L�1, j�= �
��− · � ,� j�=� j���. We thus have a matrix
that depends on �,

L��� = �
�1��� �2��� ¯ �N���

��̃2,�1� ��̃2,�2� ¯ ��̃2,�N�
] ] � ]

��̃N,�1� ��̃N,�2� ¯ ��̃N,�N�
� . �56�

To compute with L��� without resorting to cofactor expansions, we express L��� as a rank-1
perturbation of a matrix of numbers. Define

E = � d̄�1� d̄�2� ¯ d̄�N�

��̃2,�1� ��̃2,�2� ¯ ��̃2,�N�
] ] � ]

��̃N,�1� ��̃N,�2� ¯ ��̃N,�N�
� , �57�

where the vector d* is chosen to be a unit vector orthogonal to the remaining rows of E. This
choice assures that the rank deficiency of E will be smaller than or equal to the rank deficiency of
the matrix with any other first row. It also gives us some convenient properties, namely, Ed=e1,
d*E‡=e

1
*, E‡e1=d, and e

1
*E=d*, where E‡ is the modified pseudoinverse of Definition 5. It costs

O�N2M� to construct E and O�N3� to compute E‡ and �E�.
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We then have

L��� = E + e1����� − d�* �58�

and, with the help of Proposition 3, compute

�L���� = �E��I + d����� − d�*� = �E��1 + ����� − d�*d� = �E�����*d , �59�

which yields the following
Proposition 14:

�
�� − �1�	
i=2

N

�̃i��i�,	
i=1

N

�i��i��
A

= �E�����*d , �60�

where E and d are defined as above.
Remark 15: If i	1, then,

��E��*d,�̃i� = �E���,�̃i�*d = �E�E�i, · �*d = 0, �61�

since d is orthogonal to E�i , · �, which is row number i of E. Thus, the function (60) is orthogonal
to �̃i for i	1. The same property will hold when the operators T, V, and W are present in the
antisymmetric inner product, as described in the following sections.

B. Antisymmetric inner product with �„�−�1… and „T and/or V… present

To compute antisymmetric inner products involving operators, we will modify formulas from
Sec. III. The first �trivial� modification is to denote the variable of integration in those formulas by
��, so as not to confuse it with the variable � in 
��−�1�. Next, we replace �L� with �L���� given
by �59�. Using �58�, we can express

L���−1 = �E + e1����� − d�*�−1 = ��E�I + d����� − d�*���−1 = �I + d����� − d�*�−1E−1.

�62�

Using the Sherman–Morrisson formula �see, e.g., Ref. 23 and �B5� in Appendix B�, we then have

L���−1 = �I −
d����� − d�*

1 + ����� − d�*d
�E−1 = �I + d

�d − �����*

����*d
�E−1. �63�

The vector of functions �, which was defined by L−1�̃, now depends on the variable � in 
��
−�1� as well as its own internal variable ��. Replacing L−1 with �63� and �̃ with �̃����
+e1�
��−���− �̃1�����, we obtain

���,��� = �I + d
�d − �����*

����*d
�E−1��̃���� + e1�
�� − ��� − �̃1������ . �64�

To compute it, we first compute the base case �̃����=E−1�̃����. Multiplying out �64� and noting

d*�̃=d*E‡�̃= �̃1, we obtain

���,��� = �̃���� + d
d*�̃���� − ����*�̃���� + 
�� − ��� − �̃1����

����*d

= �̃���� − d
����*�̃���� − 
�� − ���

����*d
. �65�

We are now ready to state our main formulas.
Proposition 16: When E is nonsingular,
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�
�� − �1�	
i=2

N

�̃i��i�,�T + V�	
i=1

N

�i��i��
A

�66�

is equal to

�E�
N!
�����*�d� �T* + V*����*�̃d�� −� �T* + V*���*d��̃d��� + �T* + V*���*d����� ,

�67�

which can be computed with total cost O�N3+N2M�.
Proof: To compute �66�, we start with ��L� /N!���T*+V*����*�d�� from �53� and substitute

in �59� and �65� to obtain

�E�����*d

N!
� �T* + V*��������*��̃���� − d

����*�̃���� − 
�� − ���
����*d

�d��. �68�

Distributing out and rearranging, we have

�E�
N!
� ����*d�T* + V*����*�����̃���� − �T* + V*��������*d���*�̃����

+ �T* + V*��������*d
�� − ���d��, �69�

which yields �67�. Although in �63� and �65� we divide by �*d, which could be zero, this
denominator cancels in the final expression, so we can argue by continuity that the final expression
is still valid. One can also prove this directly by determining the null space of L and then using
�55�. �

Remark 17: It is the term with pointwise multiplication, �T*+V*���*d� in (67), that allows
adaptive refinement around the nuclei in the numerical algorithm.

To obtain the formulas when E is singular, we follow the same logic as in Sec. III F 1. Denote
the singular vectors in the null space of E by ��ũi , ṽi��.

Proposition 18: When E has rank deficiency greater than 1, (66) is zero. When E has rank
deficiency 1, (66) is equal to

1

�E‡�N!
����*�d� �T* + V*���*ṽ1�ũ1

*�̃d�� − ṽ1� �T* + V*���*d�ũ1
*�̃d��� , �70�

which can be computed with total cost O�N3+N2M�.

C. Antisymmetric inner product with �„�−�1… and W present

Conceptually, the derivation if W is present in the inner product is the same and we obtain the
following propositions.

Proposition 19: When E is nonsingular,

�
�� − �1�	
i=2

N

�̃i��i�,W	
i=1

N

�i��i��
A

�71�

is equal to
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1

2

�E�
N!
�2�����*dWP��*�̃���� − ����*WP��̃�*d����� + ����*�d� �*�̃WP��*�̃�

− �*WP��̃�*��̃d�� − 2� �̃WP��*�̃��*d − �̃�*WP��̃�*d�d���� , �72�

which can be computed with total cost O�N3+N2MP�.
Proposition 20: When E has rank deficiency of 1, (71) is equal to

1

�E‡�N!
������*dWP��*ṽ1ũ1

*�̃���� − ����*ṽ1WP�ũ1
*�̃�*d�����

+ ����*�d� �*ṽ1�ũ1
*�̃WP��*�̃� − WP�ũ1

*�̃�*��̃�d�� +� �̃��*ṽ1WP�ũ1
*�̃�*d�

− WP��*ṽ1ũ1
*�̃��*d�d�� − ṽ1� �*d�ũ1

*�̃WP��*�̃� − WP�ũ1
*�̃�*��̃�d���� , �73�

which can be computed with total cost O�N3+N2M +NMP�.
Proposition 21: When E has rank deficiency of 2, (71) is equal to

1

�E‡�N!
����*�d� �*ṽ1ũ1

*�̃WP��*ṽ2ũ2
*�̃� − �*ṽ2WP�ũ2

*�̃�*ṽ1�ũ1
*�̃d�

− ṽ1� �*ṽ2ũ2
*�̃WP��*dũ1

*�̃� − �*ṽ2WP�ũ2
*�̃�*d�ũ1

*�̃d�

− ṽ2� �*ṽ1ũ1
*�̃WP��*dũ2

*�̃� − �*ṽ1WP�ũ1
*�̃�*d�ũ2

*�̃d�� , �74�

which can be computed with total cost O�N3+NM +MP�.

V. DETAILS OF THE GREEN’S FUNCTION ITERATION

In this section, we fill in the missing pieces in the Green’s function iteration algorithm
outlined in Sec. II B. First, we give a representation for the Green’s function itself. Then we use
the methods in the previous sections to construct the vector b in �18� and the matrix A in �17� to
form the normal equations �15�. Next, we give the algorithm from Sec. II B in outline form as a
pseudocode. Finally, we gather the computational cost of the whole method and present some
linear algebra techniques to reduce it.

A. Representing the Green’s function

In this section, we construct a separated representation for the Green’s function G� in �7�
following the ideas in Refs. 7 and 6 �see also Refs. 25 and 26�. We will use this representation in
Sec. V B when constructing the right-hand side of the normal equations.

We begin by constructing an approximation of 1 / t with exponentials such that

� 1

t
− �

p=1

L

wp exp�− �pt�� � � �75�

on the interval t� �1,��, with wp and �p positive. Expansions of 1 / t into exponentials have been
used in several applications and constructed by diverse techniques, see, Refs. 9, 32, 60, 8, 10, and
24 and the references therein. The interval �1, �� is addressed specifically in Ref. 10, where it is
shown that the error rate �=O�exp�−c�L�� can be achieved, which means we can achieve L
=O��ln ��2�.
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Substituting t=s / �−�� for ��0 into �75� and dividing by −�, one has

� 1

s
− �

p=1

L
wp

− �
exp�−

�p

− �
s�� �

�

− �
, �76�

valid on the interval s� �−� ,��. In Fourier coordinates, we can express

G� =
1

2�2��i
2 − �

, �77�

from which we see that �G��=1 / �−��. Since the denominator is at least −�	0, we can substitute
into �76� and obtain

�G� − �
p=1

L
wp

− �
e−�p �

i=1

N

exp�−
2�2�p

− �
�i

2�� �
�

− �
= ��G�� . �78�

Thus, we obtain an approximation of G� with relative error � in norm using L terms, with L
independent of N and �. To construct G� as an integral operator in spatial coordinates, we apply
the inverse Fourier transform to obtain

G�  �
p=1

L

�
i=1

N

Fri

p , �79�

where the convolution operator Fri

p , which depends implicitly on �, is defined by

Fri

p f��1, . . . ,�N� = � wp

− �e�p
�1/N� − �

2��p
�3/2

�� exp�−
− �

2�p
�ri − r��2� f��1, . . . ,�i−1,�r�,�i�,�i+1, . . . ,�N�dr�. �80�

This construction has a theoretical value since it has proved the following theorem.
Theorem 22: For any �	0, ��0, and N, the N-particle Green’s function G� has a separated

representation with relative error in operator norm bounded by � using L=O��ln ��2� terms, with
L independent of � and N.

B. Constructing the right-hand side vector b in „18…

In order to do a step in the iteration, we need to construct the right-hand side b in the normal
equations �15� in Sec. II B 2. Since A is an orthogonal projection, A and G� commute, and G� is
self-adjoint, the entry �18� is equal to

b�l���� = − s̃l�
m

r

sm�AG�
�� − �1�	
i=2

N

�̃i
l��i�,�V + W�	

i=1

N

�i
m��i�� . �81�

Substituting �79� in for G� and rearranging, we have

b�l���� = − s̃l�
m

r

sm�
p=1

L �AFr1

p 
�� − �1�	
i=2

N

Fri

p �̃i
l��i�,�V + W�	

i=1

N

�i
m��i�� . �82�

The computation is of the same form for each value of the indices l, m, and p, so we can consider
a single term and suppress the indices.

To evaluate a single term �AFr1

��−�1�	i=2Fri

�̃i��i� , �V+W�	i=1�i��i��, we use the formu-
las in Propositions 16–21 in Secs. IV B and IV C, with two modifications. The first modification

is that �̃ is replaced with F�̃ throughout. This replacement causes no structural change to the
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formulas; it just changes the inputs. The second modification is caused by the replacement of

��−�1� by Fr1


��−�1�. The first row of L��� in �56� becomes F����*, which makes �L����
= �E�F����*d. Similarly, �65� becomes

���,��� = �̃���� − d
F����*�̃���� − F
�� − ���

F����*d
. �83�

Tracking F through the formulas, we find that all we need to do is to modify the formulas in Secs.
IV B and IV C by applying F to the final result.

C. Constructing the matrix A in „17…

In this section, we construct the kernels in �17� for the normal equations �15� using the same
ideas in Sec. IV. We fix l and l� and define

K��,��� =
A�l,l����,���

s̃ls̃l�
, �84�

w���� = ��̃2
l ���� ¯ �̃N

l �����*, �85�

y��� = ��̃2
l���� ¯ �̃N

l�����*, �86�

D = ���̃2
l ,�̃2

l�� ¯ ��̃2
l ,�̃N

l��
] � ]

��̃N
l ,�̃2

l�� ¯ ��̃N
l ,�̃N

l��
� . �87�

Using Löwdin’s rules �38�, we have

K��,��� =
�L�
N!

=
1

N!
�
�� − ��� y*���

w���� D
� . �88�

Expressing L as a low-rank perturbation of

�1 0

0 D � ,

we have

K��,��� =
1

N!
��1 0

0 D � + �1

0
��0 y*���� + �
�� − ��� − 1

w����
��1 0��

=
1

N!
�1 0

0 D
��I + �1

0
��0 y*���� + �
�� − ��� − 1

D−1w���� ��1 0�� =
�D�
N!
�1 y*���D−1w����

1 
�� − ���
�

=
�D�
N!

�
�� − ��� − y*���D−1w����� . �89�

If D is singular, then we apply the same logic as in Sec. III F 1. If D has rank deficiency
greater than 1, then K�� ,���=0. If it has rank deficiency of 1, then we have
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K��,��� =
1

�D‡�N!
�I + � 0

− v
��0 v*� + �1

0
��0 y*���� + �
�� − ��� − 1

D‡w���� ��1 0��
=

1

�D‡�N!
 0 0 v*D‡w����
− y*���v 1 y*���D‡w����

0 1 
�� − ���

 =

− �y*���v��v*D‡w�����
�D‡�N!

=
− �y*���v��u*w�����

�D‡�N!
, �90�

where D‡ is the modified pseudoinverse of Definition 5.
In the nonsingular case, we can construct D at cost O�N2M� and compute D−1 at cost O�N3�.

Applying this kernel costs O�NM� to integrate against a function in ��, O�N2� to apply D−1, and
then O�NM� to apply y* to the result. In the singular case, we can compute D‡ at cost O�N3� and
construct y*v and u*w at cost O�NM�. Since the variables separate, applying this kernel costs
O�M�.

Remark 23: In the case r=1, which corresponds to the HF formulation, D= I and K�� ,��� is
just the projector orthogonal to ��̃i�i=2

N .

D. Pseudocode

In this section, we give the algorithm in outline form as a pseudocode. We do not indicate
when objects can be recalled or updated from previous computations.

Loop through I Green’s function iterations �9�, �10�, and �13�. For each of these:
Construct G� as in Sec. V A, obtaining the operators Fp in �80�.
Loop through the N directions �electrons�. For each of these:

Compute A�l , l�� via �89� for all �l , l��.
Compute b�l���� in �82� by:
Loop in the r values of l and for each:

Sum over the L values of p and for each:
Compute Fp�i

l for all i.
Sum over the r values of m and for each:

Using Fp�̃ in place of �̃, construct E in �57�.
Compute �E� and E−1.

Construct �̃=E−1F�̃.

Construct �*�̃, �*d, and �̃�*.

Compute WP��*�̃� and WP��̃�*�.
Compute �67� and �72� using these ingredients.
Apply Fp to ��67� � �72��.

Apply conjugate gradient to solve the normal equations �15�.
Renormalize as in �10�.
Update � via �13�.

Remark 24: We have presented the algorithm in serial form for clarity. The loop in l, sum in
p, and sum in m can be trivially parallelized. Parallelizing the loop through the N electrons would
represent a change in the algorithm, which we will develop elsewhere.

E. Overall computational cost

The computational cost is dominated by the repeated construction and solution of the normal
equations �15�. For a fixed direction, the construction cost is dominated by �82�, which has r2L
inner products. The most costly portion of the inner products is �72�, which requires O�N3

+N2MP� operations, giving us the net construction cost
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O�r2LN2�N + MP�� . �91�

The operation count to solve the normal equations �15� by applying the matrix of integral opera-
tors A S times is

O�r2SN�N + M�� . �92�

As we loop through the directions, we may reuse several quantities, so the total cost of the
construction is less than N times the cost for one direction. In fact, the construction cost for the
entire loop through N directions is of the same order as the cost for one direction. The application
cost is simply multiplied by N. In the sections below, we show how to update the construction for
direction k=2 using what we already have for direction k=1 and then determine the cost for one
loop through the directions. We defer the development of the technical linear algebra rules on
low-rank updates to Appendix B and here only show how to apply them to our problem. Our final
conclusion is the computational cost

O�Ir2N2�L�N + MP� + S�N + M��� , �93�

where I is the number of Green’s function iterations.

1. Reuse in computing A

Let D1 denote D in �87� for directions 1 and D2 the version for direction 2. We let �̂1
l denote

the updated version of �̃1
l . To construct D2 requires only the first column and row of D1 to be

updated, specifically

D2 = D1 + e1�0 ���̂1
l ,�̃3

l�� − ��̃2
l ,�̃3

l��� ¯ � + ���̂1
l ,�̂1

l�� − ��̃2
l ,�̃2

l��
]

�e1
*. �94�

Computing those inner products involving �̂1
l and �̂1

l� costs O�NM�. Using Proposition 25 twice,
we compute D2

‡, �D2
‡�, and if appropriate v, all at cost O�N2�. The formulas �88� and following are

modified by inserting the extra column and row in the second place instead of the first, but
otherwise, the procedure is unchanged. The cost for one loop through the N directions is thus
O�N3+N2M�.

2. Reuse in computing antisymmetric inner products with �„�−�1… and operators

We again let �̂1
l denote the updated version of �̃1

l computed during the solving of k=1. The
inner products needed to construct E2 require only the one row involving �̂1 to be updated, at cost
O�NM�. The vector d1 can be constructed by doing the SVD of E1 with the first row set to zero
and then selecting one of the right singular vectors vi with zero singular value. Using Proposition
25, we obtain the SVD of E2 with first row set to zero and second row containing the new inner
products, and thus can find d2. Putting the first and second rows back in proper position, we then
have

E2 = E1 + e1���F�̂1,�1� ¯ �F�̂1,�N�� − d1
*� + e2�d2

* − ��F�̃2,�1� ¯ �F�̃2,�N��� , �95�

and we can compute �E2
‡� and E2

‡ using Proposition 25 twice, at cost O�N2�.
Proposition 25 produces a rank-2 update and we must apply it twice. For notational ease, we

will show how to use a rank-1 update applied once; the method easily extends. Assuming E2
‡

=E1
‡+ fg*, we next update

032107-22 Beylkin, Mohlenkamp, and Pérez J. Math. Phys. 49, 032107 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



�̃2 = E2
‡F�̃2 = �E1

‡ + fg*��F�̃1 + e1��̂1 − �̃1�� = �̃1 + d1��̂1 − �̃1� + fg*F�̃1 + fg*e1��̂1 − �̃1�

�96�

at cost O�NM�. It is insufficient to just update �̃2 in this way, since it would still cost O�N2MP�
to compute WP��̃2�*� in �72�. Instead, we update the combined quantity

�*WP��̃2�*� = �*WP��̃1�*� + �*d1WP���̂1 − �̃1��*� + �*fWP�g*F�̃1�*�

+ �*fg*e1WP���̂1 − �̃1��� �97�

at cost O�NMP�. With this quantity and �̃2, we can compute �72� at cost O�NMP�. The singular
cases work similarly. The cost for one loop through the N directions is thus O�N2MP�.
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APPENDIX A: ALGORITHMS BASED ON GRADIENT DESCENT

We prefer the integral iteration in Sec. II B 1 due to the generally superior numerical proper-
ties of integral formulations. One could, however, try to minimize �4� directly with a method based
on gradients. Since the machinery that we have constructed applies to these methods as well, we
sketch how it can be used.

To minimize �4�, we could use a gradient descent starting at some initial guess for �. Inserting
our current approximation � and formally taking the gradient, we have

2
�H�,���A��,��A − �H�,��A��,���A

��,��A
2 . �A1�

Defining � to be our current value of �4�, the gradient reduces to

2

��,��A
��H�,���A − ���,���A� . �A2�

The gradient is with respect to the parameters that are used to minimize �4�. In our case, that is the
values of the functions � j

l. Taking the gradient with respect to the point values of � j
l results in a

vector g of functions, defined by

gj
l��� =

2

��,��A
sl�

m=1

r

sm�
�� − � j�	
i�j

N

�i
l��i�,�H − �I�	

i=1

N

�i
m��i��

A
, �A3�

where 
��−� j� is the delta function. The methods in Sec. IV can be used to construct g.
Moving t in the direction opposite the gradient replaces � with
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�
l=1

r

sl	
i=1

N

��i
l − tgi

l� . �A4�

Some search procedure can then be used to find an appropriate t. Then � is updated and the
procedure repeated.

Alternatively, we can use an alternating direction approach and take the gradient with respect
to the functions �i

l for one direction i while fixing the functions in the other directions and then
loop through the directions. This loop through the directions is then repeated I times until we
obtain the desired accuracy. We describe the i=1 case. Moving t in the direction opposite the
gradient replaces � with

�
l=1

r

sl��1
l − tg1

l �	
i=2

N

�i
l = � − t�

l=1

r

slg1
l 	

i=2

N

�i
l = � − t�̃ . �A5�

Inserting �A5� into �4� results in

�H�� − t�̃�,� − t�̃�A

�� − t�̃,� − t�̃�A
=

�H�,��A − 2t�H�,�̃�A + t2�H�̃,�̃�A

��,��A − 2t��,�̃�A + t2��̃,�̃�A
. �A6�

Once the inner products have been computed, we can find the minimizer for �A6� by solving a
quadratic equation and then update � via �A5�. The cost to construct g for one direction is r2 times
the cost for one inner product. The dominant cost for the inner product comes from �72�, which
costs O�N3+N2MP�, giving us the net construction cost

O�r2N2�N + MP�� . �A7�

As described in Sec. V E 2, many of the computations can be reused, so the cost for a single loop
through the N directions is of the same order. Thus, for I loops through the directions, the overall
computational cost is

O�Ir2N2�N + MP�� . �A8�

APPENDIX B: LOW-RANK UPDATES

In this section, we develop formulas for low-rank updates to A†, A�, and �A‡� based on Refs.
43 and 4.

Proposition 25: Given A, A†, A�, �A‡�, b, and c, let A1=A+bc* and compute

d = A†b, e = �A†�*c, f = �I − AA†�b, g = �I − A†A�c ,

d = d*d, e = e*e, f = f*f, g = g*g ,

� = 1 + c*A†b, � = ���2 + dg, � = ���2 + ef ,

p = �̄d + dg, q = �e + ef . �B1�

�1� If �=0, f =0, and g=0, then rank�A1�=rank�A�−1 and

A1
† = A† − d−1dd*A† + e−1�− A†e + d−1�d*A†e�d�e*, �B2�

A1
� = A� + �1/�de�de*, �B3�
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�A1
‡� = − �1/�de��A‡� . �B4�

�2� If ��0, f =0, and g=0, then rank�A1�=rank�A� and

A1
† = A† − �−1de*, �B5�

A1
� = A�, �B6�

�A1
‡� = �A‡��−1. �B7�

�3� If f =0 and g�0, then rank�A1�=rank�A� and

A1
† = A† − �−1d�gd*A† + �̄e*� + �−1g�− de* + �d*A†� , �B8�

A1
� = A� −

������ − ����g + �gd

g�����
g*A�, �B9�

�A1
‡� = �A‡�

��̄ − �����2 + ��

������
. �B10�

�4� If f �0 and g=0, then rank�A1�=rank�A� and

A1
† = A† − �−1�fA†e + �̄d�e* + �−1�− ed + �A†e�f*, �B11�

A1
� = A� − A�f

������� − ����f + �̄fe�*

f �����
, �B12�

�A1
‡� = �A‡�

�� − �̄����2 + �̄�

������
. �B13�

�5� If f �0 and g�0, then rank�A1�=rank�A�+1 and

A1
† = A† − f−1df* + g−1g�− e* + �f−1f*� , �B14�

A1
� = A� − �1/�gf�gf*, �B15�

�A1
‡� = �A‡��1 + �g−1f−1 − �1/�gf��g*A�f� , �B16�

The cost to compute A1
†, A1

�, and �A1
‡� is O�N2�.

Proof: The overall method, update rules for rank�A1�, and update rules for A1
† are taken from

Ref. 4, which also lists the useful properties

c*d = e*b = � − 1, b*f = f , c*g = g, d*g = 0, e*f = 0,

A†Ad = d, AA†e = e, A*f = A†f = 0, Ag = �A†�*g = 0. �B17�

They give update rules for the row and column spans of A1, which we translate into update rules
for A�. The cases �B3�, �B6�, and �B15� follow directly. Corresponding to �B9�, their update rule
is that the row span of A� should be extended �orthogonally� by d and then reduced by projecting
orthogonal to p. We translate this into a �Householder� reflection of the vector g into a vector in
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the span of d and g perpendicular to p. Adjusting these vectors to have equal norm and real inner

product yields the reflection of the vector �̄��g to −�� � �gd− �̄g�, resulting in

�I −
2��̄��g + ����gd − �̄g����̄��g + ����gd − �̄g��*

���̄��g + ����gd − �̄g���2
�A�, �B18�

which simplifies to �B9�. To obtain �B12�, we use the same process, extending the column span by
e and then projecting orthogonal to q by a reflection of ���f to −�� � �fe−�f�.

To derive the update rules for �A1
‡�, first add the update rules for A1

† and A1
� and then take the

determinant. On the right-hand side, factor out a copy of A‡ leaving a low-rank perturbation of the
identity, to which we can apply Proposition 3. To simplify the results, we use �B1� and �B17�, and
the further observations

�A‡�−1d = b − f, �A‡�−1A†e = c − g, �A‡�−1g = �A��*c ,

e*�A‡�−1 = c* − g*, f*�A‡�−1 = b*�A��*. �B19�

To obtain �B4�, we compute

�A1
‡� = �A‡��I − d−1bd*A† + ��1/�de�b − e−1e + d−1e−1�d*A†e�b�e*�

= �A‡��1 − d−1d*A†b d*A†��1/�de�b − e−1e + d−1e−1�d*A†e�b�

− d−1e*b 1 + e*��1/�de�b − e−1e + d−1e−1�d*A†e�b�
�

= �A‡�� 0 d*A†�1/�de�b
d−1 e*��1/�de�b + d−1e−1�d*A†e�b�

� = �A‡��− �1/�de�� . �B20�

For �B7�, we have �A1
‡ � = �A‡ � �I−�−1be*�= �A‡ � �1−�−1e*b�= �A‡ ��−1. To obtain �B10�, we compute

�A‡��I + �A‡�−1�d�− �−1�gd*A† + �̄e*� −
�g*A�

�����
�

+ g��−1�− de* + �d*A†� −
��� − ����g*A�

g��
���

= �A‡��1 + �− �−1�gd*A† + �̄e*��b ��−1�− de* + �d*A†��*b

�− �g*A�/�������A��*c 1 − ���� − ����g*A�/g���*�A��*c
�

= �A‡�� �̄/� d/�

− �g/����� ���/��
� = �A‡�

��̄ − �����2 + ��

������
. �B21�

A similar calculation yields �B13�. To obtain �B16�, we compute

�A‡��I + �A‡�−1�− f−1df* + g�g−1�− e* + �f−1f*� − �1/�gf�f*���

= �A‡�� 1 f*�A��*c

g−1f−1�� − 1� 1 + �g−1�f−1 − �1/�gf��f*�A��*c
�

= �A‡��1 + ��− �1/�gf�� + g−1f−1�f*�A��*c� = �A‡��1 + �g−1f−1 − �1/�gf��g*A�f� .

�B22�

�

032107-26 Beylkin, Mohlenkamp, and Pérez J. Math. Phys. 49, 032107 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



When A and A1 are nonsingular, �B5� is the Sherman–Morrisson formula �see, e.g., Ref. 23�.
For our application, we need the singular vectors in A� rather than A� itself, but then only when
rank�A���3. These singular vectors can be extracted by a simple modification of the power
method with deflation.
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