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1. Introduction. The computational complexity of most algorithms in dimension d grows ex-
ponentially in d. Even simply accessing a vector in dimension d requires M d operations, where M is
the number of entries in each direction. This effect has been dubbed the Curse of Dimensionality [1,
p.94], and is the single greatest impediment to computing in higher dimensions. In [3] we introduced
a strategy for performing numerical computations in high dimensions with greatly reduced cost, while
maintaining the desired accuracy. In the present work, we extend and develop these techniques in
a number of ways. In particular, we address the issue of conditioning, describe how to solve linear
systems, and show how to deal with antisymmetric functions. We present numerical examples for each
of these algorithms.

A number of problems in high-dimensional spaces have been addressed by the usual technique of
separation of variables. Given an equation in d dimensions, one can try to approximate its solution f
by a separable function, as

f(x1, . . . , xd) ≈ φ1(x1) · · ·φd(xd) . (1.1)

This form allows one to approximate f with complexity growing only linearly in d and compute
using only one-dimensional operations, thus avoiding the exponential dependence on d (see e.g. [35]).
However, if the best approximate solution of the form (1.1) is not good enough, then there is no way
within this framework to improve the accuracy.

We use the natural extension of separation of variables

f(x1, . . . , xd) =
r
∑

l=1

slφ
l
1(x1) · · ·φl

d(xd) + O(ε) , (1.2)

which we call a separated representation. We set an accuracy goal ε first, and then adapt {φl
i(xi)}, {sl},

and r to achieve this goal with minimal separation rank r. The separated representation seems rather
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simple and familiar, but it actually has a surprisingly rich structure and is not well understood. It is not
a projection onto a subspace, but rather a nonlinear method to track a function in a high-dimensional
space while using a small number of parameters. In §2 we develop the separated representation,
extending the results in [3], and making connections with other results in the literature. We introduce
the concept of the condition number of a separated representation, which measures the potential loss
of significant digits due to cancellation errors. We provide analysis and examples to illustrate the
structure of this representation, with particular emphasis on the variety of mechanisms that allow it
to be surprisingly efficient. Note, however, that the theory is still far from complete.

Many linear algebra operations can be performed while keeping all objects in the form (1.2). We
can then perform operations in d dimensions using combinations of one-dimensional operations, and
so achieve computational complexity that formally scales linearly in d. Of course, the complexity also
depends on the separation rank r. The optimal separation rank for a specific function or operator is
a theoretical question, and is considered in §2. The practical question is how to keep the separation
rank close to optimal during the course of some numerical algorithm. As we shall see, the output of an
operation, such as matrix-vector multiplication, is likely to have larger separation rank than necessary.
If we do not control the separation rank, it will continue to grow with each operation. In §3 we present
an algorithm for reducing the separation rank back toward the optimal, and a modified algorithm that
avoids ill-conditioned representations. Although the modification required is very simple, it makes the
overall algorithm significantly more robust.

In order to use the separated representation for numerical analysis applications, many algorithms
and operations need to be translated into this framework. Basic linear algebra operations, such as
matrix-vector multiplication, are straightforward and were described in [3], but other operations are
not as simple. In §4 we continue to expand the set of operations that can be performed within
this framework by showing how to solve a linear system. Many standard methods (e.g. Gaussian
elimination) do not make sense in the separated representation. We take two approaches to solving
a linear system. First, we discuss how to use iterative methods designed for large sparse matrices,
such as conjugate gradient. Second, we present an algorithm that formulates the system as a least-
squares problem, combines it with the least-squares problem used to find a representation with low
separation-rank, and then solves this joint problem by methods similar to those in §3. We also discuss
how these two general strategies can be applied to problems other than solving a linear system.

One of our target applications is the representation and computation of wavefunctions of the
multiparticle Schrödinger equation in quantum mechanics. These wavefunctions have the additional
constraint that they must be antisymmetric under exchange of variables, a condition that seems to
preclude having low separation-rank. In §5 we present the theory and algorithms for representing
and computing with such antisymmetric functions. We construct an antisymmetric separation-rank
reduction algorithm, which uses a pseudo-norm that is only non-zero for antisymmetric functions.
This algorithm allows us to guide an iterative method, such as the power method, to converge to the
desired antisymmetric solution.

We conclude the paper in §6 by briefly describing further steps needed for the development of this
methodology.

2. The Separated Representation. In this section we introduce the separated representation
and discuss its properties. In order to emphasize the underlying physical dimension, we define opera-
tors and functions in d dimensions. To avoid confusion between, e.g., a “vector in 2 dimensions” and a
“matrix”, we clarify our notation and nomenclature. A function f in dimension d is a map f : Rd → R

from d-dimensional Euclidean space to the real numbers. We write f as f(x1, . . . , xd), where xi ∈ R.
A vector F in dimension d is a discrete representation of a function in dimension d on a rectangular
domain. We write it as F = F (j1, . . . , jd), where ji = 1, . . . ,Mi. A linear operator A in dimension d
is a linear map A : S → S, where S is a space of functions in dimension d. A matrix A in dimension
d is a discrete representation of a linear operator in dimension d. We write A = A(j1, j

′
1; . . . ; jd, j

′
d),
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where ji = 1, . . . ,Mi and j′i = 1, . . . ,M ′
i . For simplicity we assume M ′

i = Mi = M for all i.
Definition 2.1 (Separated Representation of a Vector). For a given ε, we represent a vector

F = F (j1, j2, . . . , jd) in dimension d as

r
∑

l=1

slF
l
1(j1)F

l
2(j2) · · ·F l

d(jd) ≡
r
∑

l=1

slF
l
1 ⊗ Fl

2 ⊗ · · · ⊗ Fl
d , (2.1)

where sl is a scalar, s1 ≥ · · · ≥ sr > 0, and Fl
i are vectors in dimension 1 with entries F l

i (ji) and unit
norm. We require the error to be less than ε:

‖F−
r
∑

l=1

slF
l
1 ⊗ Fl

2 ⊗ · · · ⊗ Fl
d‖ ≤ ε . (2.2)

We call the scalars sl separation values and the integer r the separation rank. The definition for
a matrix is similar, with the matrices Al

i = Al
i(ji, j

′
i) replacing the vectors Fl

i = F l
i (ji). For matrices

it would be preferable to use the l2 operator norm to measure the approximation error (2.2), but the
operator norm may take too long to compute. Since we will also need to treat the matrices as vectors
and compute inner products in §3, we will use the Frobenius norm for matrices.

Classical loss of significance (loss of precision) occurs when we have numbers L and a with L� a
and attempt to compute a by subtracting (L + a) − L. Since L � a, when (L + a) is formed in
finite arithmetic, significant digits of a are lost. In the extreme case, (L + a) is rounded to L, and
a is lost completely. In the separated representation, similar loss of significance occurs when the
summands in (2.1) become much larger than F itself. By our normalization convention, we have
‖slF

l
1 ⊗ Fl

2 ⊗ · · · ⊗ Fl
d‖ = sl. In the case when the summands are orthogonal, we have ‖F‖ =

(
∑r

l=1 s
2
l )

1/2, so the l2 norm of the separation values provides a convenient way to measure and
control the loss of precision.

Definition 2.2 (Condition Number of a Separated Representation). The condition number of
(2.1) is the ratio

κ =
(
∑r

l=1 s
2
l )

1/2

‖F‖ . (2.3)

In order to maintain significant digits when using the representation (2.1), we cannot allow κ to be
too large. In particular to achieve (2.2) numerically it suffices to have

κµ‖F‖ ≤ ε , (2.4)

where µ is the machine roundoff (e.g. 10−16).
The main point of the separated representation is that since we only operate on one-dimensional

objects, the computational complexities are formally linear in d rather than exponential. The key,
however, is to determine any hidden dependency of r on d. We demonstrated in [3], and discuss further
in this paper, that in many physically significant problems the separation rank depends benignly on
d, so that near-linear complexities can be achieved in practice. We show next how to do the basic
operations of addition, inner product, and matrix-vector multiplication. Other basic operations such
as scalar multiplication, trace, Frobenius norm, matrix-matrix multiplication, etc. follow a similar
pattern. The following statements can be easily verified.

Proposition 2.3 (Basic Linear Algebra). :
Vector representation cost: The separated representation of a vector requires O(d · r ·M) entries

to store.
Vector addition F̂ + F̃: Vectors in the separated representation can be added by merging their rep-

resentations as sums and resorting. There is no appreciable computational cost, but the new
separation rank is nominally the sum of the two separation ranks: r = r̂ + r̃.
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Vector inner product 〈F̂, F̃〉: In the separated representation, we can compute the inner product of
two vectors via

〈F̂, F̃〉 =
r̂
∑

l̂=1

r̃
∑

l̃=1

ŝl̂s̃l̃〈F̂l̂
1, F̃

l̃
1〉 · · · 〈F̂l̂

d, F̃
l̃
d〉 (2.5)

in O(d · r̂ · r̃ ·M) operations.
Matrix-vector multiplication AF: In the separated representation, multiplication can be done via

G = AF =

rA
∑

l̂=1

rF
∑

l̃=1

sA

l̂
sF

l̃
(Al̂

1F
l̃
1) ⊗ · · · ⊗ (Al̂

dF
l̃
d) , (2.6)

plus renormalizations and sorting. The computational cost is O(d · rA · rF · M2) and the
resulting separation rank is nominally rG = rArF.

In all these operations we see a common pattern, that linearity and separability allow us to use
only one-dimensional operations, and so the computational cost is linear in d. In the addition and
multiplication operations we see another common feature: the separation rank of the output is greater
than the separation rank of the input. We will address this issue in §3 by introducing an algorithm
to reduce the separation rank.

Remark: It is useful to combine the separated representation with other techniques for reducing
the computational complexity. Spatial or frequency partitioning can be used to obtain a sparse
structure, generally at the cost of increasing the separation rank. The component vectors Fl

i could be
sparse, or in the matrix case Al

i could be banded, sparse, or have a more complicated structure such as
partitioned SVD [2, 25, 22, 45, 24]. Such techniques will be essential for the efficient implementation
of the separated representation for many problems, but are not important for the purposes of this
paper.

2.1. Analysis and Examples. In dimension d = 2, the separated representation (2.1) of a
vector F (j1, j2) reduces to a form similar to the singular value decomposition (SVD) (see e.g. [17]) of
F considered as a matrix in dimension one. In fact, we can construct an optimal representation by using
an ordinary SVD algorithm, and then truncating. Since we do not have any orthogonality constraints
on Fl

i, the representation (2.1) is more general than the SVD, and we no longer have the uniqueness
properties of the SVD. We call r the separation rank in analogy with the operator rank that the
ordinary SVD produces. For the matrix A(j1, j

′
1; j2, j

′
2), we can again construct an optimal separated

representation using an ordinary SVD algorithm, as was done in [44]. The separated representation
does not correspond to the singular value decomposition of this matrix, however, because we use
a different pairing of indices. Instead of separating the input coordinates (j ′1, j

′
2) from the output

coordinates (j1, j2), we separate the direction (j1, j
′
1) from the direction (j2, j

′
2). Matrices that have

full rank as operators may still have low separation rank. For example, the identity is trivially
represented as I1 ⊗ I2, with separation rank one.

When d > 2, Definition 2.1 differs substantially from the SVD and should be considered on its
own. Although our initial intuition is based on the SVD, essentially none of its theoretical properties
hold. In particular, while the SVD is defined without reference to ε, the separated representation
requires ε for its very definition. While there are several algorithms to compute the SVD, there are
none with proven convergence to compute a representation with optimal separation rank. For our
purposes, we need to have small separation rank, but do not need it to be optimal (see §3). We note
that the case ε = 0 appears to be a difficult problem (see e.g. [36, p.158]).

Representations very similar to (1.2) have been studied for more than 30 years for statistical
applications, under the names of “canonical decomposition” and “parallel factors analysis”. We refer
to [14, 27, 28, 13, 12] and the references therein. Since the problems considered for statistics have
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as input a dense d-dimensional data cube, their applications have been limited to small dimensions
(d � 10, mostly d = 3). As it was intended for a different purpose, the numerical issues that we are
considering here were not addressed.

Other representations have been proposed that are more restrictive than (1.2), but are easier to
compute, and/or have more easily studied properties. The Higher Order SVD of [14] (also compare to
[36, p.57]), for example, is a generalization of the SVD that replaces the singular values (corresponding
to sl) by a d-dimensional matrix, but as a consequence still has computational complexity that depends
exponentially on d. Configuration Interaction (CI) methods (see e.g. [39]) use a representation that
looks like (1.2), but with the additional constraint that all the vectors Fl

i are selected from a master
orthonormal set, and, thus, if we pick any two of them, they will either be identical or orthogonal.
This constraint greatly simplifies many calculations, but may require a much larger number of terms.
For example, in our approach we can have a two-term representation

φ1(x1)φ2(x2) · · ·φd(xd)

+ c[φ1(x1) + φd+1(x1)][φ2(x2) + φd+2(x2)] · · · [φd(xd) + φ2d(xd)] , (2.7)

where {φj}2d
j=1 form an orthonormal set. To represent (2.7) while requiring all factors to come from a

master orthogonal set would force us to multiply out the second term and thus obtain a representation
with 2d terms. Non-orthogonal CI methods (e.g. [37, 30]) appear to give results in between these two
extremes.

2.1.1. Example: Sine of a Sum. We next consider an elegant example that illustrates several
phenomena that we have observed in separated representations.

One early numerical test of the separated representation was to consider a sine wave in the diagonal
direction, sin(x1+· · ·+xd), and attempt to represent it in the separated form, using only real functions.
We can use the usual trigonometric formulas for sums of angles to obtain a separated representation,
but then we will have r = 2d−1 terms. For example,

sin(x1 + x2 + x3) = sin(x1) cos(x2) cos(x3) + cos(x1) cos(x2) sin(x3)

+ cos(x1) sin(x2) cos(x3) − sin(x1) sin(x2) sin(x3) . (2.8)

Our numerical algorithm, however, found a representation with only d terms, which led us to a new
trigonometric identity in d dimensions.

Lemma 2.4.

sin(

d
∑

j=1

xj) =

d
∑

j=1

sin(xj)

d
∏

k=1,k 6=j

sin(xk + αk − αj)

sin(αk − αj)
. (2.9)

for all choices of {αj} such that sin(αk − αj) 6= 0 for all j 6= k. A proof of this identity and some
of its generalizations can be found in [32], along with a discussion of its relationship to the work of
Calogero [10, 11] and Milne’s identity [31, 7].

This example illustrates that:

• The obvious analytic separated representation may be woefully inefficient, and thus we should
be careful relying on our initial intuition.

• The separated representation has an essential non-uniqueness. Although uniqueness can occur
under special circumstances, (2.9) demonstrates that it is not natural to demand it.

• There can be ill-conditioned representations (as e.g. α1 → α2), even when well-conditioned
representations are readily available.
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2.1.2. Example: Finite Differences in an Auxiliary Parameter. We next consider an
example of a construction for operators that are a sum of one-directional operators (i.e.

∑d
i Ai),

which, like the Laplacian

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
d

, (2.10)

trivially have separation rank d.

Our numerical experiments uncovered a construction by which such operators can actually be
represented with far fewer terms. This construction is based on approximating the limit

d
∑

i

Ai = lim
h→0

1

2h

(

d
⊗

i=1

(Ii + hAi) −
d
⊗

i=1

(Ii − hAi)

)

, (2.11)

which we recognize as a derivative. Under the assumption that Ai is bounded, for any given ε,
we can choose h sufficiently small and obtain a separation-rank two representation. Unbounded
operators like the Laplacian must first be modified or restricted to make them bounded. The condition
number (Definition 2.2) of (2.11), however, is κ = O(1/h), and such a representation may be unusable
numerically. Accounting for conditioning, we obtain the following theorem.

Theorem 2.5. Let Ai be a fixed, bounded operator A acting in the direction i, ε > 0 be the error
bound, and 0 < µ � 1 be the machine unit roundoff. Assuming µd‖A‖ < ε, we can represent

∑d
i Ai

to within ε in the operator norm with separation rank

r = O(
log(d‖A‖/ε)

log(1/µ) − log(d‖A‖/ε) ). (2.12)

Proof. Consider the auxiliary operator-valued function of the real variable t

G(t) = ‖A‖
d
⊗

i=1

(

Ii + t
Ai

‖A‖

)

, (2.13)

and note that G′(0) =
∑d

i Ai. Using an appropriate finite difference formula of order r, we approximate

G′(0) ≈
r
∑

j=1

αjG(tj) ≡ ‖A‖
r
∑

j=1

αj

d
⊗

i=1

(

Ii + tj
Ai

‖A‖

)

, (2.14)

thus providing a separation-rank r approximation. If we choose equispaced tj with step size h, then
the truncation error of this finite difference can be made proportional to (hr/r!)G(r+1)(ξ) where |ξ| ≤ h
(see e.g. [23]). Pulling out the norm ‖A‖ as we did in (2.13) allows us to choose h = α/d for some
α < 1 and bound the truncation error by d‖A‖αr. The error due to finite precision arithmetic and
loss of significance is proportional to µ‖A‖/h = µd‖A‖/α. Adding these two errors and choosing
α = (µd/r)1/(r+1) yields the bound d‖A‖µr/(r+1). Setting this equal to ε and solving for r, we obtain
(2.12).
The estimate (2.12) implies that, as long as d‖A‖/ε� 1/µ, the separation rank is O(log(d‖A‖/ε)).

This example illustrates that:

• low separation-rank can sometimes be achieved at the expense of (reasonably) increasing the
condition number. For problems in high dimensions it is an excellent trade-off.
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2.1.3. Example: Exponential Expansions using Quadratures. We next consider an ex-
ample of a methodology for constructing separated representations, built upon the exponential. The
exponential function converts sums into products via ea1+a2+···ad = ea1ea2 · · · ead , valid as long as ai

commute. In this section ai will be a function or operator in the direction i, such as x2
i or ∂2/∂x2

i .
Suppose we wish to find a separated representation for the radial function f(‖x‖) supported on the

ball of radius 1 in dimension d. Since physical forces often depend on the distance between interacting
objects, this case is of practical interest (see e.g. [19, 20]).

We first consider a one-dimensional function f(y), and assume that we can approximate f on the
interval 0 ≤ y ≤ 1 by a sum of Gaussians, such that for some σl, τl, and r

|f(y) −
r
∑

l=1

σle
τly

2 | < ε|f(y)| . (2.15)

By substituting
∑d

i x
2
i for y2 and using the properties of exponentials, we obtain a separated repre-

sentation for f(‖x‖) on the ball. In this case we obtain a pointwise relative error bound instead of
(2.2). We thus have reduced the problem of finding a separated representation for a radial function in
dimension d to the one-dimensional approximation problem (2.15). Usually the minimal r to satisfy
(2.15) is not the optimal separation rank for f(‖x‖), but it does provide an excellent upper bound.

The approximation problem (2.15) is addressed in [5] by extending methods in [4]. For certain
choices of f(y) there is a systematic way to approximate it with small r, even if the function has a
singularity at zero. For example, let us consider f(y) = y−α for α > 0.

Lemma 2.6 (see [5]). For any α > 0, 0 < δ < 1, and 0 < ε ≤ min{ 1
2 ,

8
α} there exist positive

numbers τl and σl such that for all δ ≤ y ≤ 1

∣

∣

∣

∣

∣

1

yα
−

r
∑

l=1

σle
−τly

2

∣

∣

∣

∣

∣

≤ ε

yα
, (2.16)

with

r = log ε−1
[

c0 + c1 log ε−1 + c2 log δ−1
]

, (2.17)

where c0, c1, and c2 are constants that only depend on α. For fixed power α and accuracy ε, we thus
have r = O(log δ−1).

The construction uses the integral representation

1

yα
=

2

Γ(α/2)

∫ ∞

−∞

e−y2e2t+αt dt , (2.18)

as described in [19, 20]. For a given accuracy, the rapid decay of the integrand restricts integration to
a finite interval. Using the trapezoidal rule for an appropriately selected interval and step size, yields
a separated representation (see [19, 20]). The resulting representation is then optimized further using
results in [5].

This approach shows that:
• There is a general, semi-analytic method (based on representations with exponentials) to

compute separated representations of radial functions.
These representations for radial functions can be used to construct representations for functions

of operators. In particular, we can substitute an operator of the form
∑d

i Ai, such as the Laplacian,

for y2 in (2.15), and obtain a separated representation for f((
∑d

i Ai)
1/2), valid on a portion of its

spectrum. Using Lemma 2.6 with α = 2 and scaling to an appropriate interval, we can obtain a
separated representation for the inverse Laplacian.
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Lemma 2.7. There exists a separated representation for ∆−1, valid on the annulus (
∑d

i=1 ξ
2
i )1/2 ∈

[δD,D] in Fourier space, with separation rank (2.17). By applying the Fourier transform, we can
obtain the corresponding Green’s function

1

(d− 2)Ωd

1

‖x‖d−2
↔

r
∑

l=1

σl

d
⊗

i=1

1√
4πτl

exp(−x2
i /4τl), (2.19)

where Ωd is the surface area of the unit sphere in dimension d.
Notice that the bound in Lemma 2.7 is independent of d. For periodic problems it is more natural

to construct a representation on a cube rather than a ball. In dimension d the cube inscribed in
the unit ball has side-length 2d−1/2. If we compensate for this effect to maintain a cube of fixed
side-length, then the separation rank grows as O(log(d)).

Robert Harrison (personal communication, 2003) pointed out to us an example that produces a
separated representation for a multiparticle Green’s function without going through a Fourier-space
construction. Following [26], we consider the multiparticle operator I −

∑d
i=1 ∆i, where ∆i is the

Laplacian in dimension three. The Green’s function for this operator is

G(x) =
1

(2π)3d/2

K3d/2−1(‖x‖)
‖x‖3d/2−1

, (2.20)

where x = (x1, x2, . . . xd), xi ∈ R
3, and K is the modified Bessel function. Using its integral repre-

sentation [18, Eq. 8.432.6]

Kν(y) =
1

2
(
y

2
)ν

∫ ∞

0

t−ν−1 e−t− y2

4t dt , (2.21)

we have

G(x) = π3d/2

∫ ∞

0

t−3d/2 e−t−‖x‖2

4t dt , (2.22)

and changing variables t = e−2s, obtain

G(x) = 2π3d/2

∫ ∞

−∞

e−e−2s+(3d−2)s e−
1

4
‖x‖2e2s

ds . (2.23)

The integral (2.23) is similar to that in (2.18) and, using a similar approach to that in Lemma 2.6, we
obtain a separated representation for the Green’s function G(x) with any desired accuracy.

These representations illustrate that:
• There is a practical way to compute separated representations of Green’s functions, and in

important cases low separation-rank can be achieved.
This set of examples also used another property of separated representations that we should point out
explicitly:

• Separation rank is invariant under separable changes of coordinates, for example the Fourier
transform.

2.1.4. Classes of Functions. Let us turn our consideration from specific, physically meaningful
operators to general functions in high dimensions. Traditional approaches to characterizing a wide
class of low-complexity functions (using smoothness and decay of derivatives) have not been productive
so far. For example, translating the results in [41] into our context shows that for functions in the class
W k

2 , which is characterized using partial derivatives of order k, there is a separated representation
with separation rank r that has error

ε = O(r−kd/(d−1)) . (2.24)
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However, a careful analysis of the proof of Theorem 4.1 in [41] shows that the ‘constant’ in the O(·)
is at least (d!)2k , and that the inductive argument can only run if r ≥ d!. Thus this result, while
technically correct, does not provide a useful class of functions with low separation rank.

The class of complete asymptotically smooth functions is considered in [16, 43, 42]. Theorem 1 in
[43] says essentially that error ε = O(2−k) can be achieved with r = O(kd−1), with constants that
depend on d. The separation rank is still exponential in d. We also note that r = M d−1 is always
achievable by applying the ordinary SVD recursively, so this result is really giving information about
the “resolution” in each direction M rather than r.

The sparse grid approach, introduced in [46] and reviewed in [9], considers function classes that
allow hierarchically arranged efficient grids in high dimensions. Each grid point corresponds to a
separable basis function, so this construction yields a separated representation with separation rank
equal to the number of grid points. For certain classes of functions, the sparse grid approach can reduce
the number of grid points from the naive O(Md) to O(CdM(logM)d−1). This reduction improves
computational times, but the complexity still grows exponentially with d.

Currently we do not have any characterization of functions with low separation rank. The examples
above, however, show that there are surprising mechanisms that allow low separation rank, and thus
lack of a complete theory should not delay use of this representation. Two of the constructions
described were discovered through numerical experimentation and we expect there are several other
mechanisms that we have not yet encountered. In §5 we discuss the case of antisymmetric functions,
where the nominal separation rank is very large, but a weak formulation allows us to use a low
separation-rank representation and retain the ability to compute with the true function. We believe
that a weak approach such as this may be the key to a characterization of functions with low separation
rank.

3. Reducing the Separation Rank. As discussed above, linear algebra operations such as
addition and multiplication produce a vector in the separated representation, but with larger separa-
tion rank. In order to prevent uncontrolled growth of the separation rank, we need to find another
separated representation for the same vector, but with reduced separation rank. In this section we
discuss our algorithms for reducing the separation rank, while maintaining the prescribed accuracy.
We assume that G is given to us in the separated representation,

G =

rG
∑

l=1

sGl Gl
1 ⊗Gl

2 ⊗ · · · ⊗Gl
d, (3.1)

but with larger separation rank rG than necessary for its representation. We note that to reduce
the separation rank of a matrix A, we simply treat the component matrices Al

i as vectors using the
Frobenius inner product and norm.

Although it would be useful to obtain a representation with the optimal separation rank, after
years of study of similar objects [27, 28, 14, 29, 12], there is no known algorithm that guarantees
optimality. However, since we are only interested in the total computational cost, we do not need
the optimal solution. In fact, a nearly optimal representation will have similar computational cost,
and is much easier to construct. Even when d = 2, and a solution with optimal separation rank
can be obtained through the singular value decomposition, we find it much more efficient overall to
use a faster algorithm that produces a suboptimal solution (this algorithm has been used in [6]). In
higher dimensions a suboptimal representation is actually preferred when it has better conditioning
(see Definition 2.2). Using the algorithm described below, we uncovered the trigonometric identity
(2.9) and the derivative formulation (2.14), and produced the numerical results in §3.3.

We start with F, an initial approximation of G in (3.1),

F =

rF
∑

l̃=1

sF
l̃
Fl̃

1 ⊗ Fl̃
2 ⊗ · · · ⊗ Fl̃

d. (3.2)
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If we have no other information, then we start with a random vector with rF = 1. If we are performing
an iteration such as the power method, then we use the previous iterate as our starting guess. We
then call the core algorithm described in §3.1, and it improves the approximation F, without changing
rF. We exit the entire separation-rank reduction successfully if ‖F−G‖ < ε. If not, we either call the
core routine again and repeat the process, or decide that rF is not sufficient. It is easy to prove that
‖F − G‖ can never increase, so in general it decreases at each step. If the relative decrease becomes
too small, then we assume rF is not sufficient, increase rF by one by appending another (random)
term to F, and repeat the process again. The threshold at which we increase rF can strongly affect
the speed of the algorithm; currently we select it via experimentation. In outline form this algorithm
is:

• Loop while ‖F−G‖ > ε :
– Call the algorithm in §3.1 once.
– If the relative change in ‖F−G‖ is too small, then increase rF.

3.1. Alternating Least Squares. For a given separation rank rF, the best separated represen-
tation is that which minimizes the error ‖F − G‖ subject to the condition number constraint (2.4).
We first describe an algorithm that ignores the constraint on κ (Definition 2.2), and then modify it
in §3.2 to take κ into account. The minimization of ‖F − G‖ is a nonlinear least-squares problem.
To make this problem tractable, we exploit its multilinearity and use an alternating least-squares
approach. The alternating least-squares algorithm (without the condition number constraint) is used
in statistics for a similar purpose (e.g. [21, 28, 29, 8, 15, 40]). In our case the input is a vector in the
separated representation, rather than a dense data vector in dimension d, and, thus, we can consider
much larger values of M and d.

The alternating least squares algorithm takes the initial approximation F in (3.2) and then itera-
tively refines it. We refine only in one direction k at a time, and then “alternate” (loop through) the

directions k = 1, . . . , d. To refine in the direction k, fix the vectors in the other directions {Fl̃
i}i 6=k,

and then solve for new Fl̃
k (and sF

l̃
) to minimize ‖F − G‖. It is easy to show that ‖F − G‖ never

increases, and so usually decreases at each step. In outline form this algorithm is:
• Loop k = 1, . . . , d :

– Fix {Fl̃
i}i6=k and solve for Fl̃

k (and sF
l̃
) to minimize ‖F−G‖.

The point of this alternating approach is that each refinement is a linear least-squares problem,
which can be solved with standard linear algebra techniques (see e.g. [17]). By taking the gradient of
‖F − G‖ with respect to the vector entries in direction k and setting it equal to zero, one obtains a
linear system (the normal equations) to solve for the updated vector entries. In our case, the system
naturally divides into separate systems for each coordinate, with the same matrix. For fixed k, we
form the matrix B with entries

B(l̂, l̃) =
∏

i6=k

〈Fl̃
i,F

l̂
i〉. (3.3)

Then for a fixed coordinate jk, form the vector bjk
with entries

bjk
(l̂) =

rG
∑

l=1

sGl G
l
k(jk)

∏

i6=k

〈Gl
i,F

l̂
i〉. (3.4)

The normal equations for the direction k and coordinate jk become

Bcjk
= bjk

, (3.5)

which we solve for cjk
= cjk

(l̃) as a vector in l̃. After computing cjk
(l̃) for all jk, we let sF

l̃
= ‖cjk

(l̃)‖
and F l̃

k(jk) = cjk
(l̃)/sF

l̃
, where the norm is taken with respect to the coordinate jk.
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For fixed k and jk, it requires r2
F
· d · M operations to compute B, rFrG · d · M operations to

compute bjk
, and r3

F
to solve the system. Since B and the inner products in bjk

are independent
of jk, the computation for another value of jk has incremental cost rGrF + r2

F
. Similarly, many of

the computations involved in B and bjk
are the same for different k. Thus, one full alternating least

squares iteration costs O(d · rF(r2
F

+ rG ·M)). Because this algorithm uses inner products, which can
only be computed to within roundoff error µ, the best accuracy obtainable is ε =

√
µ.

3.2. Controlling the Condition Number. Several of the most efficient mechanisms for pro-
ducing low separation-rank representations exhibit ill-conditioning (see Sections 2.1.1 and 2.1.2), and,
thus, we need to control the condition number κ. Instead of just trying to minimize ‖F − G‖, we
add a penalty based on κ and minimize ‖F − G‖2 + α(κ‖F‖)2 = ‖F − G‖2 + α

∑rF
l̃

(sF
l̃
)2, where

α is a small parameter. This strategy is sometimes called ‘regularization’ in other contexts. The
modification needed in the alternating least-squares algorithm is especially simple. Since by defini-
tion (sF

l̃
)2 =

∑

j c
2
jk

(l̃), we have
∑rF

l̃
(sF

l̃
)2 =

∑

jk

∑rF
l̃
c2jk

(l̃), and so we are still solving a linear
least-squares problem. The only modification we need to make in our algorithm is to add αI to B in
(3.3).

In contrast to typical regularizations, α is fixed given the roundoff error µ. We wish to choose α
to balance the terms so that the error due to loss of significance due to ill-conditioning is weighted
the same as the error in the approximation. The error due to loss of significant digits is bounded by
κµ‖F‖, which indicates that we should choose α = µ2. However, α that small would be truncated
when B + αI is constructed, so we are forced to choose α just slightly larger than the roundoff error
µ. This choice limits the best accuracy obtainable overall to

√
µ, which is consistent with the best

accuracy in the ordinary alternating least-squares algorithm.

3.3. Numerical Example: Sine of a Sum. In [3] we reported the basic performance of the
separation-rank reduction on random vectors. Since random vectors in high dimensions are nearly
orthogonal and, thus, do not easily exhibit ill-conditioning, we instead consider a particular example
chosen for its ill-conditioning. We consider sine of the sum of variables, as in §2.1.1. Suppose we have
a separated representation with insufficient separation rank, as it would be the case if the j = d term
in the sum (2.9) is missing. This term then is the error in the representation, so the iteration will try
to minimize it. The only way to minimize it is by maximizing its denominator, which occurs when
sin(αk − αd) = ±1 for all k. This condition forces sin(α1 − α2) → 0, which makes the j = 1 term in
the sum increase without bound and, thus, sends the condition number κ to infinity.

Without the modification in §3.2, we indeed see that as we iterate using alternating least-squares, κ
increases until the representation is untenable numerically. With the modification, the representation
stabilizes at a poor, but tenable, representation, which can then be ‘grown’ into a good approximation.
For example, when d = 10 and r = 9, and we attempt to force an ill-conditioned representation by
performing 1000 iterations, a typical result is approximation error ε = 0.055 and κ = 1.3 · 105. When
we then allow r = 10, we achieve an approximation with ε = 1.11 · 10−4 and κ = 1.9 · 104. (Choosing
αj equally spaced in the identity leads to κ ≈ 7.) By allowing r = 11, which is more than needed
in the identity, we achieve ε = 1.58 · 10−7 and κ = 1.3 · 102. Our conclusion from many experiments
of this type is that with the modification in §3.2, the alternating least-squares algorithm is robust
enough to use routinely, and provides close to optimal separation rank.

4. Solving a Linear System. In this section we discuss how to solve the linear system AF = G

for F, where all objects are in the separated representation. One of the standard methods for solving a
linear system is Gaussian elimination (LU factorization). In the separated representation, however, we
do not act on individual entries in a d-dimensional matrix, so it is not clear if there is a generalization
of this approach.

The situation is better with iterative algorithms. The first approach is to apply one of the
iterative methods designed for large sparse systems. We also use this opportunity to describe how
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to combine other iterative algorithms with the separated representation. The second approach is to
formulate the system as a least-squares problem, combine it with the least-squares problem used to
find a representation with low separation-rank, and then solve this joint problem by methods similar
to those in §3. This approach incorporates a separation-rank constraint into the formulation of the
problem, and can serve as a model for how to approach other problems. We give a numerical example
to illustrate this algorithm.

4.1. Iterative Algorithms. Under the assumption that ‖I − A‖ < 1, one method for solving a
system is the iteration

Fk+1 = (I − A)Fk + G. (4.1)

It requires only matrix-vector multiplication and vector addition, both of which can be performed
using the algorithms in Proposition 2.3 with computational cost linear in d. Since these basic linear
algebra operations increase the separation rank, we apply the separation-rank reduction algorithm in
§3 to Fk+1 before using it in the next iteration.

This example illustrates our basic computational paradigm for iterative algorithms: replace the
linear algebra operations in some standard algorithm by those in Proposition 2.3, and then insert the
separation-rank reduction algorithm in §3 between each step. The Steepest Descent and Conjugate
Gradient methods (see e.g. [17]), for example, only require matrix-vector multiplication, vector addi-
tion, and vector inner products, and so fit into this model. One can construct other iterations, such
as

Fk+1 = (I − cA∗
A)Fk + cA∗G, (4.2)

where c is chosen to make c‖A∗A‖ < 1.

There are several other important iterative algorithms that can be extended to use the separated
representation by the same approach. In particular:

• Power method (Fk+1 = AFk) to determine the largest eigenvalue (in absolute value) and the
corresponding eigenvector for a matrix A.

• Schulz iteration (Bk+1 = 2Bk − BkABk) to construct A−1 [38].
• Sign iteration (Ak+1 = (3Ak − A3

k)/2) to construct sign(A) (see e.g. [33, 2]).

Building on these, we can then perform:

• Inverse power method (AFk+1 = Fk) for computing the smallest eigenvalue (in absolute value)
and the corresponding eigenvector for a matrix A.

• Scaling and squaring ((exp(A/2n))2
n

) to construct the matrix exponential exp(A).

Additional algorithms to compute, e.g., the fractional power of a function, fα for f > 0 and 0 < α < 1,
are under development.

It is essential of course that all the matrices and vectors involved have low separation rank. Our
heuristics for deciding if these algorithms are appropriate is the following:

1. The initial matrix/vector must have low separation rank.
2. The final matrix/vector must have low separation rank (a priori or a posteriori).
3. The iteration should move us from the initial to the final state without creating excessive

separation rank in the intermediate matrices/vectors. This condition is relatively simple
to achieve in self-correcting algorithms like Schulz iteration since we can use low accuracy
initially and then gradually improve it as the iteration progresses. This issue is more difficult
in algorithms that are not self-correcting.

We note that in general, as the complexity estimates demonstrate, the cost of these types of algorithms
is dominated by the separation-rank reduction step.
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4.2. Finding a Low Separation-Rank Solution to a Linear System. The problem of
solving AF = G can be cast as that of minimizing the error ‖AF − G‖. We then add a constraint
on the separation rank of F, and, thus, simultaneously solve the linear system and find a reduced
separation-rank representation for the solution. This approach of reformulating a problem as a least-
squares minimization and then constraining to low separation rank has wide applicability, and will
also be used in §5.3.

We use an algorithm very similar to that described in §3, with the same issues of convergence
and conditioning. Note that if A = I then it is in fact the same problem. We describe next the
modifications needed in the core alternating least-squares algorithm in §3.1. Given a matrix

A =

rA
∑

l=1

sA

l A
l
1 ⊗ A

l
2 ⊗ · · · ⊗ A

l
d, (4.3)

and a right-hand-side vector

G =

rG
∑

l=1

sGl Gl
1 ⊗Gl

2 ⊗ · · · ⊗Gl
d, (4.4)

we iteratively refine an approximate solution

F =

rF
∑

l=1

sFl Fl
1 ⊗ Fl

2 ⊗ · · · ⊗ Fl
d. (4.5)

Fixing a direction k, we now pose the linear least-squares problem to refine in that direction. In
contrast to the algorithm in §3.1, the coordinates do not split into separate problems, so instead of
(3.3) we form the matrix B with entries

B((ĵ , l̂), (j, l)) =

rA
∑

l1

rA
∑

l2

sA

l1s
A

l2





M
∑

j′

Al1
k (j′, ĵ)Al2

k (j′, j)





∏

i6=k

〈Al1
i Fl

i,A
l2
i Fl̂

i〉. (4.6)

We then form the vector b with entries

b((ĵ, l̂)) =

rA
∑

l1

sA

l1

rG
∑

l3

sGl3





M
∑

j′

Al1
k (j′, ĵ)gl3

k (j′)





∏

i6=k

〈Gl3
i ,A

l1
i Fl̂

i〉. (4.7)

The normal equations for the direction k become

Bc = b, (4.8)

which we solve for c = c((j, l)). Once we find c, we compute sFl = ‖c(·, l)‖ and set F l
k(j) = c(j, l)/sFl .

The sums
∑M

j′ A
l1
k (j′, ĵ)Al2

k (j′, j) and
∑M

j′ A
l1
k (j′, ĵ)gl3

k (j′) are computed for all values at initializa-

tion, for total cost O(dr2
A
M3 +drArGM

2). To compute A
l1
i Fl̂

i costs O(drArFM
2). The inner products

〈Al1
i Fl

i,A
l2
i Fl̂

i〉 and 〈Gl3
i ,A

l1
i Fl̂

i〉 can be computed for all i with cost O(dr2
A
r2
F
M + drArFrGM). Each

time we increment k, we only need to update AF and the inner products for one value of i, and so the
cost for one loop in k has the same order as the cost for a single k. To compute the products

∏

i6=k

takes O(dr2
A
r2
F

+ drArFrG). These can also be updated as k is incremented to preserve the overall
complexity, although in practice this cost is not dominant, so we recompute them to avoid potential
division by zero. The final assembly of B and b costs O(r2

A
r2
F
M2 + rArFrGM) and solving the normal

equations costs O(r3
F
M3). These last operations are not reused for different k, so their contributions
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to the overall complexity include a factor of d. The dominant complexity will depend on the relative
sizes of the different parameters, but under the assumption that the separation ranks are small, the
behavior is O(dM3), as compared to O(dM) for the core alternating least-squares algorithm in §3.1

When the separation rank rF appears to be insufficient, we add a new, random term to F, as we
did in §3. We find, however, that when the linear system is poorly conditioned, this random vector
can overwhelm the approximate solution that we already have. To prevent this from happening, we
precondition the new term by running the alternating least-squares iteration on it, while keeping those
terms that we already have fixed. Once this appears to have converged, we include this new term in
the main iteration.

4.3. Numerical Example: Low Separation-Rank Solutions of Linear Systems. We per-
formed three sets of tests on the algorithm in §4.2. Since they involved random vectors, and the
alternating least-squares is initialized with random vectors, the performance varied from run to run.
We report a typical result for each test. All tests were performed on a laptop with a 1.7GHz processor,
had d = 20 and M = 30, and requested approximation within ε = 10−6. For simplicity of explanation,
we used very low separation ranks, but as long as we avoid the separable case (rF0

= 1 or rA = 1; see
below), these tests illustrate the general behavior.

The purpose of the first test was to check the correctness of the algorithm for random inputs. We
generated a random F0 with rF0

= 2 and a random A with rA = 6, and formed G = AF0. Then
we used the above algorithm to construct a solution F of the linear system, to approximate F0. The
algorithm performed 50 iterations at rF = 1 and then ‘decided’ that it was stuck. It then increased rF
to 2, performed 18 iterations and achieved the requested error bound with ‖AF−G‖/‖G‖ = 9.96·10−7.
We did not attempt to measure or control the condition number of the linear system, but did measure
the error ‖F−F0‖/‖F0‖ = 1.08 ·10−6. There was considerable variation between runs, but separation
rank rF = 2 or 3 is achieved routinely in under 30 seconds.

The purpose of the second test was to check the algorithm for a physically significant operator.
The second test is identical to the first except that we chose A to be a discretization of the Laplacian
∆. The second derivatives were represented with a 9 point centered finite difference with order 8. We
used (2.10) with rA = d = 20 for its separated representation, rather than the more efficient form from
Theorem 2.5, in order to avoid possible confounding of effects. We also disabled the modification in
§3.2 for controlling the condition number. We estimated ‖A‖ ≈ 1.17 · 105. The algorithm performed
only 5 iterations at rF = 1 before ‘deciding’ that it was stuck, with error ‖AF − G‖/‖G‖ = 0.231,
and increasing the separation rank to 2. As noted at the end of §4.2, we sometimes find it necessary
to precondition the newly added term, and so have incorporated an initial fitting into our standard
algorithm. In this example, the desired error bound was achieved after 4 iterations in this initial
fitting, and then one iteration of the main algorithm achieved ‖AF−G‖/‖G‖ = 3.94 ·10−8. The total
time used was less than one minute.

We then measured the error ‖F − F0‖/‖F0‖ = 2.99 · 10−8. This linear system is singular, so we
would expect a much worse result. It appears that there are two effects causing this favorable behavior.
The first is that the constraint on the separation rank of F discourages the addition of extra terms,
such as a constant term that is in the nullspace of ∆. In order to confirm this effect, we attempted to
suppress it by starting with rF = 3, but the error did not become larger. The second effect is that a
random vector is expected to have a small (∼ M−d/2 ≈ 10−15) projection on the constant vector (or
any other fixed vector). Since we initialized with random vectors, we started with virtually nothing
in the nullspace of A, and it had no incentive to grow, especially considering the small number of
iterations. In fact, the measured projections of F0 and our initial and final F onto the constant vector
were smaller than the machine roundoff µ. We attempted to increase the projection on the constant
vector by choosing d = 2 and M = 10. Then, when we set rF = 3, the error on some runs was as large
as 0.1.

The purpose of the third test was to estimate the separation rank of the inverse Laplacian. If the
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right-hand side has separation rank one, then the separation rank of the solution cannot exceed that
of the inverse operator. We kept A as a discretization of ∆, constructed G randomly with separation
rank rG = 1, and attempted to find F. We note that an explicit construction for A−1 is available in
§2.1.3 and yields an independent estimate of the separation rank of A−1. We limited the algorithm
to 2 iterations at each value of rF, and present the achieved error and time used for selected rF in
Table 4.1.

Table 4.1
Achieved errors and cumulative time used (in seconds) for solving a linear system involving the Laplacian in

dimension 20.

rF ‖AF −G‖/‖G‖ time
1 2.5 · 10−2 13
3 3.8 · 10−3 84
5 6.8 · 10−4 213
9 8.0 · 10−5 789
13 8.4 · 10−6 2048
19 9.5 · 10−7 6121

5. Antisymmetry. Motivated by the goal of computing the wavefunctions of the multiparticle
Schrödinger equation, in this section we describe how to deal with functions that satisfy the antisym-
metry constraint. This constraint is that the function must be odd under the exchange of any pair of
variables (i.e. f(x1, x2) = −f(x2, x1)). We first sketch in §5.1 the electronic N -particle Schrödinger
equation in quantum mechanics. Since electrons are fermions, we are interested in the antisymmetric
solutions, which we call wavefunctions. Although our motivation is the Schrödinger equation, the
technique presented in this section demonstrates how a weak formulation can be used to represent
functions that otherwise would have excessively large separation rank.

The straightforward construction of an antisymmetric function (via Slater determinants) yields
separation rank O(N !). We avoid this problem by instead representing a “proto-wavefunction”, that
is, a function whose antisymmetrization yields the wavefunction itself. A representation of a proto-
wavefunction allows us to do operations involving the wavefunction, such as compute its inner product
with arbitrary functions, without constructing the wavefunction explicitly. The tools that make such
an approach possible are well known in physics (e.g. Löwdin rules), and we review them in §5.2.

The key to our approach is how we guide the algorithm for solving the electronic multiparticle
Schrödinger equation to an antisymmetric solution. We work within the simplest solution algorithm,
the power method, and modify the power method to find the largest eigenvalue that has an antisym-
metric eigenfunction, rather than the largest eigenvalue overall. Applying the projector onto antisym-
metric functions after each iteration would accomplish this goal, but this straightforward approach
has computational complexity O(N !). We present in §5.3 a separation-rank reduction algorithm that
uses the pseudo-norm induced by the projection onto antisymmetric functions. It has the effect of
removing those eigenvalues that do not have an antisymmetric eigenfunction, and so allows the power
method to find the correct eigenvalue, and the wavefunction. In §5.4 we present a numerical example
of computing the wavefunction with our methods.

5.1. The Ground-State Multiparticle Schrödinger Problem. The time-independent mul-
tiparticle Schrödinger equation describes the steady state of an interacting system of non-relativistic
particles. We will work within the Born-Oppenheimer approximation, so the nuclei are fixed, and
their effect is given by a potential. For each of the N electrons in the system there are three spatial
variables r = (x, y, z), and thus 3N total. The Schrödinger equation does not account for the spin of
particles, so each electron has an additional discrete spin variable σ taking the values {− 1

2 ,
1
2}. We

denote the combined variables (r, σ) by γ. Without changing our basic formalism, we will consider
the combined variable γ to be a single direction when using the separated representation.
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The Hamiltonian operator for the multiparticle Schrödinger equation is the sum of three terms,
H = T + V + W . The kinetic energy term T = − 1

2∇2 is defined by

−2T = (∆1 ⊗ I2 ⊗ · · · IN ) + · · · + (I1 ⊗ · · · ⊗ ∆N ), (5.1)

where the three-dimensional Laplacian

∆i =
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

(5.2)

corresponds to electron i. The nuclear potential portion V is given by

V = (V1 ⊗ I2 ⊗ · · · IN ) + · · · + (I1 ⊗ · · · ⊗ VN ), (5.3)

where Vi is the operator that multiplies by the function v(ri), which includes nuclear potential terms
as well as any external potentials. The electron-electron interaction portion W of the Hamiltonian is
defined by

W =

N−1
∑

i=1

N
∑

m=i+1

Wim , (5.4)

where Wim is multiplication by the electron-electron interaction (Coulomb) potential w(ri − rm) =
c/|ri − rm|.

The antisymmetric eigenfunctions of H represent electronic states of the system and we refer to
them as ‘wavefunctions’. The bound-state wavefunctions have negative eigenvalues. The ground-state
multiparticle Schrödinger problem is to compute the wavefunction with the most negative eigenvalue.
We note that the most negative eigenvalue has an eigenspace with no antisymmetric eigenfunctions,
and thus is not associated with a wavefunction.

We need to discretize the operator H to form its matrix representation H. For the purposes of this
paper the particular choice of discretization is not important, although it is very important for actual
implementations. We let M denote the number of degrees of freedom used for each electron, and,
as we will see later, the antisymmetry constraint will forces N ≤ M . We also need to put H in the
separated representation, which we do using techniques based on Theorem 2.5. A partial analysis of
this construction, without the antisymmetry condition, appeared in [3], and a more detailed analysis
is in progress.

To construct the wavefunction ψ we will use the power method. The power method repeatedly
applies a given matrix A to a test vector F0, using the iteration

Gm = AFm

Fm+1 = Gm/‖Gm‖, m = 0, 1, . . . . (5.5)

If A is diagonalizable and has a distinct eigenvalue largest in magnitude, then for arbitrary F0, the
iterates Fm will converge to the corresponding eigenvector (up to a sign). To use H within the power
method, we choose c ≈ ‖H‖ and set A = cI − H, so that the eigenvalue that we want is positive and
largest in magnitude.

Matrix-vector multiplication produces a vector with separation rank rArF. As we iterate within
the power method, the separation rank of Fm, if unattended, would grow rapidly. To avoid this, we
apply the separation-rank reduction after each iteration. The power method, however, does not take
into account the antisymmetry constraint on the wavefunction. We do not seek the largest eigenvalue
of A, but rather the largest eigenvalue that has an antisymmetric eigenfunction. In the following
sections we describe how to incorporate this antisymmetry constraint.
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5.2. The Antisymmetrizer and the Slater Determinant. Given a function of N variables,
one can compute its antisymmetric projection using a linear operator, called the antisymmetrizer and
defined by (see e.g. [34])

A =
1

N !

∑

p∈SN

(−1)pP , (5.6)

where SN is the permutation group on N elements. For the element p ∈ SN , operator P acts on a
function by permuting its variables, as Pψ(γ1, γ2, . . .) = ψ(γp(1), γp(2), . . .). The sign (−1)p is −1 if p
is an odd permutation and 1 if it is even. If A is applied to a separable function, then the result can
be expressed as a Slater determinant:

A
N
∏

j=1

φj(γj) =
1

N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(γ1) φ1(γ2) · · · φ1(γN )
φ2(γ1) φ2(γ2) · · · φ2(γN )

...
...

. . .
...

φN (γ1) φN (γ2) · · · φN (γN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (5.7)

If the functions {φj} are linearly dependent then the determinant will evaluate to zero. We note that
in the discrete case, where φj are replaced by vectors of length M , we thus must have N ≤M .

Since the number of elements in the permutation group SN is |SN | = N !, one cannot in prac-
tice apply the operator A in (5.6) or expand the determinant in (5.7). Instead one works with a
“proto-wavefunction” that would generate the wavefunction upon the application of A. Thus one
represents (5.7) using only the product

∏N
j=1 φj(γj). Since H is purely symmetric, it commutes with

the antisymmetrizer, and we have HA∏N
j=1 φj(γj) = AH∏N

j=1 φj(γj). We therefore can defer the
application of A and act on the proto-wavefunction instead. A sum of determinants can similarly be
generated from a sum of separable functions.

This representation is sufficient because we really do not need the wavefunction itself, and the
operations that we do need to perform can be applied without explicitly antisymmetrizing. For exam-
ple, we can compute the inner product of antisymmetrized products by computing the determinant of
inner products using the Löwdin rules (e.g. [34]), namely,

〈A
N
∏

j=1

φj(γj),A
N
∏

j=1

φ̃j(γj)〉 =
1

N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

〈φ1, φ̃1〉 〈φ1, φ̃2〉 · · · 〈φ1, φ̃N 〉
〈φ2, φ̃1〉 〈φ2, φ̃2〉 · · · 〈φ2, φ̃N 〉

...
...

. . .
...

〈φN , φ̃1〉 〈φN , φ̃2〉 · · · 〈φN , φ̃N 〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (5.8)

This formula reduces the problem to that of computing a determinant of numbers, which can be
accomplished in at most O(N3) operations by, e.g., diagonalization. (Asymptotically, we expect
spatial locality to lead to O(N) complexity.)

5.3. Antisymmetric Separation-Rank Reduction. If we applied the power method to AA

instead of A, it would produce the wavefunction. As noted above, applying A has complexity O(N !),
and produces a vector with separation rank O(N !). In this section we show how to apply the power
method to AA, while never actually applying A. The key is to incorporate A into the separation-rank
reduction algorithm, and then use (5.8) to evaluate its effect.

The separation-rank reduction algorithm in §3 is, at heart, the minimization of ‖F − G‖ with
G fixed and a constraint on the separation rank of F. The algorithm in §4.3 for solving a linear
system is, at heart, the minimization of ‖AF − G‖. We now use the same principle to construct an
antisymmetric separation-rank reduction algorithm that minimizes ‖A(F−G)‖. We accomplish this
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without applying A directly by using the pseudo-norm ‖ · ‖A = ‖A(·)‖ for the approximation error
bound (2.2) and the power method normalization (5.5).

Let us drop the index m in the power method and consider the problem of reducing the separation
rank of G = Gm/‖Gm‖ to obtain F = Fm+1. We begin with a fixed vector G and an approximation
F, and will again fix a direction k and refine in that direction, as in §4. For simplicity we describe
the k = 1 case. A straightforward calculation, which we omit, produces the normal equations for this
linear least-squares problem. We form the matrix B with entries

B((ĵ , l̂), (j, l)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

δjĵ F l̂
2(j) · · · F l̂

N (j)

F l
2(ĵ) 〈Fl

2,F
l̂
2〉 · · · 〈Fl

2,F
l̂
N 〉

...
...

. . .
...

F l
N (ĵ) 〈Fl

N ,F
l̂
2〉 · · · 〈Fl

N ,F
l̂
N 〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5.9)

where δjĵ is 1 if j = ĵ and 0 otherwise. We form the vector b with entries

b((ĵ, l̂)) =

rG
∑

l′

sGl′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Gl′

1 (ĵ) 〈Gl′

1 ,F
l̂
2〉 · · · 〈Gl′

1 ,F
l̂
N 〉

Gl′

2 (ĵ) 〈Gl′

2 ,F
l̂
2〉 · · · 〈Gl′

2 ,F
l̂
N 〉

...
...

. . .
...

Gl′

N (ĵ) 〈Gl′

N ,F
l̂
2〉 · · · 〈Gl′

N ,F
l̂
N 〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (5.10)

The normal equations for the direction k = 1 become

Bc = b, (5.11)

which we solve for c = c((j, l)). We then let sFl = ‖c(·, l)‖ and F l
1(j) = c(j, l)/sFl .

In ordinary least-squares problems we are guaranteed that the normal equations will have a unique
solution, under the condition that the vectors with which we approximate are linearly independent.
In the present case, however, we are using the pseudo-norm ‖ · ‖A, which has a nontrivial null-space,
so we will not have a unique solution. In particular, we can add to Fl

1 any linear combination of
{Fl

i}N
i=2 and still have a solution, since this added term is zero under ‖ · ‖A. We require that Fl

1

be orthogonal to {Fl
i}N

i=2, so that we get a unique, minimal-norm solution, and so suppress the non-
antisymmetric part that is invisible to the pseudo-norm ‖ · ‖A. To accomplish this, we first construct
a unitary matrix Ul that rotates the subspace spanned by {Fl

i}N
i=2 into the first N − 1 coordinate

directions. The construction is essentially the same as that used in Schur factorization or Householder
QR factorization, and we refer to [17] for details. Then, to each M ×M block B((·, l̂), (·, l)), we apply
Ul̂ on the left and Ul on the right, and then remove the first N − 1 columns and rows, which now

represent the null-space. Similarly, we apply Ul̂ to the subvector b((·, l̂)) and remove its first N − 1
entries. We then solve (5.11) in this new form, insert N − 1 entries with value zero in each subvector,
and then rotate the solution back to obtain c.

It requires O(r2
F
N2M) operations to compute the inner products in B, O(r2

F
N3M2) operations

to compute the determinants in B, and similarly O(rGrFN
3M) to compute b. Solving (5.11) then

takes O(r3
F
M3) operations. The inner products can be updated and reused for different k, but the

other operations cannot. One full alternating least squares iteration costs O(rFNM(rGN
3 + r2

F
M2 +

rFN
3M)).

5.3.1. An Accelerated Algorithm. In our setup, we have M ≥ N . Assuming that M is
proportional to N , the dominant term in the computational complexity is O(r2

F
N4M2) = O(N6),

which comes from the computation of all the determinants in B. In this section we describe a linear
algebra technique that reduces this complexity by a factor of N 2. Our algorithm is based on the
following proposition.
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Proposition 5.1 (Determinant of a Rank-2 Perturbation).

|I + u1v
∗
1 + u2v

∗
2| = 1 + v∗

1u1 + v∗
2u2 + v∗

1u1v
∗
2u2 − v∗

1u2v
∗
2u1. (5.12)

To show this, observe that any eigenvector that is not in the span of {u1,u2} has eigenvalue 1,
and so does not affect the determinant. We can then consider an arbitrary vector αu1 + βu2, and
solve algebraically the eigenvalue problem in this two-dimensional subspace. Multiplying these two
eigenvalues gives us (5.12).

Fixing l̂ and l in B, we obtain a M ×M block, in which each entry requires the computation of a
determinant at cost N3, for total cost M2N3. The determinants required, however, are quite similar.
By reusing some of the computations we reduce the cost to compute this block to O(M 2N). The
block is of the form

A(i, j) =

∣

∣

∣

∣

δji w∗
j

xi E

∣

∣

∣

∣

, (5.13)

where wj and xi are column vectors of length N − 1, E is a fixed (N − 1)× (N − 1) matrix, and (·)∗
indicates transpose. We perform Gaussian elimination (LU decomposition) with full pivoting to E, at
cost O(N3). If this completes without detecting a (numerically) zero pivot, then the LU decomposition
tells us determinant |E| and gives us the ability to apply the inverse E

−1. We then write

A(i, j) =

∣

∣

∣

∣

1 0
0 E

∣

∣

∣

∣

∣

∣

∣

∣

I +

[

1
0

]

[

0 w∗
j

]

+

[

δji − 1
E−1xi

]

[

1 0
]

∣

∣

∣

∣

. (5.14)

Then for M values of i we compute E−1xi at cost O(N2), for net cost MN2. Finally, for M2 values
of (i, j) we compute the rightmost determinant in (5.14) at cost O(N) using Proposition 5.1.

If the Gaussian elimination detects a zero pivot on the last (N − 1) step, then we modify the
factorization in (5.14) so that the augmentation of E in its first term is nonsingular. In (5.14) we chose
to augment E above and on the left by zero vectors because this provides the simplest expression,
but any other fixed vectors will do. In particular, by putting an extra 1 in the proper column of
the first row, and −1 in the proper row of the first column, we can effectively introduce a 1 in the
position where the zero pivot occurred, and thus remove it. The second term in (5.14) is modified to
compensate for these changes, but then the same general procedure is followed.

If a zero pivot is detected before the last step, then we can conclude that A(i, j) = 0 for all (i, j)
and not compute them. One way to see this is to note that the rows of E span a subspace of dimension
at most N−3. Augmenting with one extra coordinate via xi can increase the span to dimension N−2,
and including the vector

[

δji w∗
j

]

can increase the span to dimension N − 1, but this still leaves
a singular matrix.

5.4. Numerical Example: Schrödinger Wavefunction. In this section we illustrate the ef-
fect of the antisymmetric separation-rank reduction by computing the wavefunction for an academic
model of the multiparticle Schrödinger equation with one-dimensional particles and simplified poten-
tials. Our model is certainly not realistic, but the results do show some similarities to phenomena
observed in physics. We provide tools to interpret the results, and show that the wavefunctions that
we compute are consistent with the intuition developed by Configuration Interaction (CI) methods
(see e.g. [39]).

For our example we will let γ = x be a one-dimensional, periodic, spinless variable. We choose the
nuclear potential v(x) = cv cos(2πx) and the electron interaction potential w(xi−xm) = cw cos(2π(xi−
xm)). Our Hamiltonian is thus

H = T + cv

N
∑

i=1

cos(2πxi) + cw

N−1
∑

i=1

N
∑

m=i+1

cos(2π(xi − xm)). (5.15)
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We discretize by sampling the variable x at M equispaced points to form the vector x. The second
derivatives ∂2/∂x2 in T are represented with a 9 point centered finite difference with order 8, which
we denote D2. We choose the shift c ≈ ‖H‖/2 and set A = cI − H. We combine cI − T − V into
∑N

i [(c/N)Ii−D2
i −cv cos(2πxi)], and then represent it using the construction in (2.14) with stepsize hv

and a pv-point finite difference in the auxiliary parameter. The electron interaction is first separated
using a trigonometric identity as cos(2π(xi −xm)) = cos(2πxi) cos(2πxm)− sin(2πxi) sin(2πxm), and
then each term is represented using a second derivative version of (2.14) with stepsize hw and a
pw-point finite difference. We use the parameters N = 5, M = 30, cv = 100, cw = 5, c = 14000,
hv = 0.1, pv = 6, hw = 0.1, and pw = 5, which were chosen not for realism, but simply to provide an
elegant example. With these parameters, we have a separation rank r = 16 approximation for A with
relative error less than 10−7. As discussed in previous sections, given a working precision of 10−16, an
allowance for the conditioning of the representation, and the need to compute square roots in order
to compute norms, this is the smallest error that we are able to measure.

We first construct a separable approximation F0 to the wavefunction by running the power method
algorithm while forcing the separation-rank reduction algorithm to yield the best approximation with
separation rank one. For separable functions, one does not need the full antisymmetric separation-
rank reduction, so we instead orthogonalize the vectors F1

i after the ordinary reduction. By always
orthogonalizing in the order of increasing i, the vectors naturally order themselves from low to high
‘energy’ (frequency). We conjecture that this process produces the Hartree-Fock solution, but we have
not studied this issue in detail. In this example, we compute F0 using 10000 iterations.

We then perform the main method with F0 as our starting guess, using ε = 10−4 and 1000
iterations. It took about a half-hour to run on a laptop with a 1.7GHz processor and 640MB of
memory, using double precision with machine roundoff µ about 10−16. It produced an approximation
for the wavefunction with separation rank two and condition number κ = 0.999898082 (by its definition
(2.3), κ may be smaller than 1 by ε). We monitor the convergence of the algorithm by comparing
two eigenvalue estimates for H, namely ‖AHF‖ and 〈AHF,AF〉, which agree only when F is indeed
an eigenvector. These estimates are presented in Table 5.1, along with the corresponding estimates
for F0. The relative discrepancy in eigenvalue estimate is 2.62 · 10−6, which is smaller than the

Table 5.1
Separation rank, achieved approximation, and eigenvalue estimates for the separable (F0) and main (F) approxi-

mations to the wavefunction.

r ε ‖AHF‖ 〈AHF,AF〉
F0 1 3.4 · 10−3 322.6727395 322.3859013
F 2 10−4 321.8852595 321.8844158

best that we expect to achieve, given that we chose ε = 10−4. Using this criteria, we conclude that
the algorithm has converged and we did indeed approximate an eigenfunction of H. Note that the
eigenvalue estimates are smaller than those for F0, as expected, and that the eigenvalue does not need
to be negative since our potentials are not strictly negative.

5.4.1. Analysis of the Wavefunction. We now perform an “autopsy” on our wavefunction and
compare it qualitatively with the intuition based on Configuration-Interaction methods. First consider
the separable approximation F0. It’s factors can be identified as the orbitals {φj}N

j . Figure 5.1 shows
a graphical representation of F0 and illustrates these orbitals.

We use these orbitals to help us visualize the wavefunction that the main iteration produces. In
Configuration-Interaction methods the factors Fl

i are all taken from the set of eigenfunctions {φj}
of the single-electron Hamiltonian. By simple permutations we can put each separable term in the
“maximum coincidence” ordering, where as many factors as possible are lined up with the orbitals
{φj}N

j . Factors that do not agree can then be interpreted as excited states. Since the Slater determi-
nant form (5.7) is unchanged by unitary transformations, our antisymmetric separation-rank reduction
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φ1 φ2 φ3 φ4 φ5

Fig. 5.1. The computed separable approximation F0 to the wavefunction.

algorithm ignores them as well, and so generally produces proto-wavefunctions that are not suitable
for visualization. There is not an obvious definition for the maximum-coincidence order in our case,
so to each term of the output of the antisymmetric separation-rank reduction we apply the following
algorithm, which is a unitary transformation with a bias toward aligning lower i.

1. Find the i such that |〈Fl
i, φ1〉| is maximized, and permute it to position 1.

2. Transform Fl
1 → Fl

1+
∑N

i=2〈Fl
i, φ1〉Fl

i and Fl
i → Fl

i−〈Fl
i, φ1〉Fl

1 for i > 1, and then normalize
them.

3. Fix position 1, exclude φ1, and do the algorithm recursively on the remaining positions.
The resulting approximate wavefunction is shown in Figure 5.2. The second term appears to have the

sl i = 1 i = 2 i = 3 i = 4 i = 5

l = 1

l = 2

0.999350

0.033093

Fig. 5.2. The computed wavefunction, represented by
P

2

l=1
sl

Q

5

i=1
Fl

i
. Each subgraph shows one vector Fl

i
.

first three electrons in their ground states, and the last two excited into higher states.

We next compute the component of F2
i that is orthogonal to F1

i for each i. By renormalizing, we
obtain a basis for the space spanned by F1

i and F2
i , shown in Figure 5.3. We can see that electrons one

and three have a component in the electron five ground state, and that electrons four and five have
components in what looks like orbitals six and seven. Electron two has a component in what appears
to be a mixture of orbitals four and one. We also give the strength of these components, namely the
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i = 1 i = 2 i = 3 i = 4 i = 5

F1
i

F2
i − 〈F2

i ,F
1
i 〉F1

i

(renormalized)

‖F2
i − 〈F2

i ,F
1
i 〉F1

i ‖ 0.035785 0.124927 0.229361 0.903820 0.999978

Fig. 5.3. The basis spanned by the wavefunction in Figure 5.2 for each electron, and the magnitude in the second
direction.

norm of the projection of F2
i orthogonal to F1

i . We can see that electrons one and two are essentially
unexcited, electron three has a significant component in the electron five ground state, electron four
is a nearly even mixture, and electron five is almost completely excited.

The results in Figure 5.3 are useful for developing our intuition and comparing with CI, but they
depend on the maximum-coincidence order that we used, which is somewhat arbitrary. To get more
meaningful data, we use F0 to get a numerical measure of the amount of the ground state orbitals
present in each term in the wavefunction. We compute (

∑N
i=1〈Fl

i, φj〉2)1/2 for each l and j. These
quantities are invariant under unitary transformations on the proto-wavefunction, but the amounts
computed for different j may not be simultaneously realizable by any unitary transformation. In CI
methods they evaluate to either 0 or 1. We also compute the “net excitation” as the amount of norm
unaccounted for by the ground state orbitals. (See [37] for a discussion of measuring excitation level.)
The results for our example are given in Table 5.2. We see that the first term is essentially unexcited.

Table 5.2
The amount of the ground state orbitals present in the two terms of the wavefunction in Figure 5.2, and their net

excitations.

ground state wavefunction term
orbital l = 1 l = 2

1 0.999999 0.999359
2 0.999992 0.992361
3 0.999998 0.973370
4 0.999861 0.455506
5 0.999968 0.233443

excitation level 0.018945 1.344271

The second term shows a decrease as we move to higher electrons, but still has a significant component
in the ground state of the fifth electron. The fractional excitation level suggests that we are in a case
analogous to (2.7), where CI would require significantly more terms. Non-orthogonal CI methods (e.g.
[37, 30]) would fall in between.

6. Future Work. Our current efforts are focused in three directions.
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First, we are working out “technical” details to allow these techniques to be used routinely in
dimensions two and three. Separated representations have been used in two-dimensional problems of
wave propagation [6], and will soon be extended to three dimensions. Separated representations have
been used in quantum chemistry within (three-dimensional) one-particle theories [19, 20]. A complete
transition to separated representations will require the ability to compute the square or cubic roots
of a function, a multiresolution structure that is efficient for potentials and Green’s functions with
singularities, and the resolution of several other issues. Such work is under way and will be reported
elsewhere.

Second, we are developing algorithms to compute the wavefunctions of the multiparticle Schrödinger
operator. The computation of the antisymmetric wavefunction demonstrated in this paper is a step
in this direction. The next major issue is size-extensivity and its impact on the separation rank of the
wavefunction. The separated representation in its current form is not size-extensive, so we are pursuing
an hierarchical version that may be able to achieve an approximate, algorithmic size-extensivity.

Finally, we are working to resolve the critical question as to what extent separated representations
can represent functions and operators in general.
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