Computing 1152 cases? You better use a computer!

Son Nguyen

under the guide of Dr. Martin Mohlenkamp Ohio University, Mathematics Department

Winter 2011

Introduction

We need to compute integrals that include terms like:

$$\sum_{a\neq b} w_1(|\gamma_a-\gamma_b|) \sum_{m\neq n} w_1(|\gamma_m-\gamma_n|) \sum_{u\neq v} w_1(|\gamma_u-\gamma_v|)$$

- ② Depending whether a, b, m, n, u, v are distinct or overlap, we have overall 1154 cases to compute.
- When all indices are distinct we have the following case, which also serve as the general expression:

Intrduction

• Where Δ is:

$$\begin{vmatrix} \theta_{a}(\gamma_{a}) & \theta_{a}(\gamma_{b}) & \theta_{a}(\gamma_{m}) & \theta_{a}(\gamma_{n}) & \theta_{a}(\gamma_{u}) & \theta_{a}(\gamma_{v}) \\ \theta_{b}(\gamma_{a}) & \theta_{b}(\gamma_{b}) & \theta_{b}(\gamma_{m}) & \theta_{b}(\gamma_{n}) & \theta_{b}(\gamma_{u}) & \theta_{b}(\gamma_{v}) \\ \theta_{m}(\gamma_{a}) & \theta_{m}(\gamma_{b}) & \theta_{m}(\gamma_{m}) & \theta_{m}(\gamma_{n}) & \theta_{m}(\gamma_{u}) & \theta_{m}(\gamma_{v}) \\ \theta_{n}(\gamma_{a}) & \theta_{n}(\gamma_{b}) & \theta_{n}(\gamma_{m}) & \theta_{n}(\gamma_{n}) & \theta_{n}(\gamma_{u}) & \theta_{n}(\gamma_{v}) \\ \theta_{u}(\gamma_{a}) & \theta_{u}(\gamma_{b}) & \theta_{u}(\gamma_{m}) & \theta_{u}(\gamma_{n}) & \theta_{u}(\gamma_{u}) & \theta_{u}(\gamma_{v}) \\ \theta_{v}(\gamma_{a}) & \theta_{v}(\gamma_{b}) & \theta_{v}(\gamma_{m}) & \theta_{v}(\gamma_{n}) & \theta_{v}(\gamma_{u}) & \theta_{v}(\gamma_{v}) \end{vmatrix}$$

Although the analysis can be done by hand, to actually implement these formulars requires automatic generation of all the cases.

 \rightarrow It is hard to do by hand!

So how to compute those things?

- Generate all the cases, which is called by geminal, that (*) can take by the comparing the values of indices, then group them by their similarity. This is done using Algorithm 1
- ② For each geminal: Expand the determinant Δ , and group them by their similarity. This task is done using **Algorithm 2**
- The next step is to apply reductions to the resulting cases. This is a work in progress. See the other poster.

Notations

• Geminals are presented by list of pair. E.g. (0,1),(1,2),(2,3) means:

$$\sum_{a,b} \sum_{n} \int \int \int w_{1}(\gamma_{a} - \gamma_{b}) w_{2}(\gamma_{a} - \gamma_{n})_{3}(\gamma_{b} - \gamma_{n})$$

$$\phi_{a}(\gamma_{a})\phi_{b}(\gamma_{b})\phi_{n}(\gamma_{n})$$

$$\begin{vmatrix} \theta_{a}(\gamma_{a}) & \theta_{a}(\gamma_{b}) & \theta_{a}(\gamma_{n}) \\ \theta_{b}(\gamma_{a}) & \theta_{b}(\gamma_{b}) & \theta_{b}(\gamma_{n}) \\ \theta_{n}(\gamma_{a}) & \theta_{n}(\gamma_{b}) & \theta_{n}(\gamma_{n}) \end{vmatrix} d\gamma_{a}d\gamma_{b}d\gamma_{n}$$

- **2 crea(x)**: Return a list containing x and the length of x plus 1. $[0,1] \rightarrow [0,1,2]$
- detg(x): Return a list contains all elements of the determinant of x.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \rightarrow [(a,d,1),(b,c,-1)],$$

• order1(x): Order x by the first number in its elements.

$$[(0,1),(2,3),(1,2)] \rightarrow [(0,1),(1,2),(2,3)]$$

Notations

- order2(x): Order each elements in x. $[(0,1),(3,2),(2,1)] \rightarrow [(0,1),(2,3),(1,2)]$
- **Q Grouping duplicate**: If $\alpha = [(0,1),(1,2),(2,1),3]$, and $\beta = [(0,1),(1,2),(1,2),4]$, and α,β are duplicates, then grouping α and β means replacing α and β by $\gamma = [(0,1),(1,2),(2,1),7]$
- **3** Corresponding Matrix: Let α be [(0,1),(1,2),(2,1),3]. The corresponding matrix of α is:

$$\begin{bmatrix} (0,0) & (0,1) & (0,2) \\ (1,0) & (1,1) & (1,2) \\ (2,0) & (2,1) & (2,2) \end{bmatrix}$$

Algorithm 1

- **Step 1**: Generate all elements in form of [(0,1),(m,n),(u,v)] that satisfies:
 - m = crea(0,1); n = crea(0,1,m); u = crea(0,1,m,n)v = crea(0,1,m,n,u)
 - $m \neq n; u \neq v$
- **Step 2**: Order the output in step 1 by function *order2*, and group duplicates.
- **Step 3**: Interchange $0 \leftrightarrow 1$, and apply function *order2* to the output in step 2 to group duplicates
- Step 4: Interchange 2 ↔ 3 and then apply function order2 for elements that contains 2, 3 in the output of step 3 to group duplicates.

Result

• There are 16 geminals:

- **1** (0, 1), (2, 3), (0, 3), 8
- **2** (0, 1), (2, 3), (2, 4), 4
- **3** (0, 1), (0, 2), (1, 3), 8
- **(**0, 1), (0, 1), (2, 3), 2
- **(**0, 1), (2, 3), (2, 3), 2
- **1** (0, 1), (0, 2), (0, 1), 8
- **(**0, 1), (0, 1), (1, 2), 8
- **3** (0, 1), (2, 3), (0, 4), 4
- **9** (0, 1), (1, 2), (0, 2), 8
- **1** (0, 1), (1, 2), (1, 3), 8
- **1** (0, 1), (1, 2), (3, 4), 4
- **(**0, 1), (0, 2), (2, 3), 8
- (0, 1), (0, 2), (2, 3), (8, 5), 1 (0, 1), (2, 3), (4, 5), 1
- (0, 1), (2, 3), (0, 1), 2
- (0, 1), (0, 2), (0, 2), 8
- (0, 1), (0, 1), (0, 1), 4

Algorithm 2

- Step 1. Create symmetry group for each geminals in the output of Part 1.1.
 - For a geminal α , generate a set G containing all possible permuatations can be a element of group symmetry of α .
 - Apply an elements, g, in G, to α , and order the outcome by $\mathit{order2}$ to get β
 - If $\alpha \equiv \beta$, put g in to the group symmetry of α .
- Step 2: Apply the group symmetry on each elements of the determinant.
 - For a geminal α , compute $detg(D_{\alpha})$, where D_{α} is a corresponding matrix of α , to obtain the list D
 - Order D by order1, and group duplicates to get the list F
 - Apply the group symmetry of α to the first element, F_0 , in F to obtain F_{01} . Order F_{01} by order1.
 - Compare F_{01} to the rest of F to group duplicates. Save the elements obtained in a list A
 - Delete F_{01} and its duplicates.
 - Repeat this procedure until the F empty. The final output is A.

Symmetry Group

 Eight geminals have identity symmetry group. Follows are symmetry group of the other 8 geminals, the identity was excluded for simplicity:

Geminals	Group Symmetry
(0,1),(2,3),(2,4)	(1,0,2,3,4)
(0,1),(0,1),(2,3)	(0,1,3,2),(1,0,2,3),(1,0,3,2)
(0,1),(2,3),(2,3)	(0,1,3,2),(1,0,2,3),(1,0,3,2)
(0,1),(2,3),(0,4)	(0,1,3,2,4)
(0,1),(1,2),(3,4)	(0,1,2,4,3)
	(0,1,2,3,5,4),(0,1,3,2,4,5),(1,0,3,2,5,4)
(0,1),(2,3),(4,5)	(0,1,3,2,5,4),(1,0,2,3,4,5),(1,0,2,3,5,4)
	(1,0,3,2,4,5)
(0,1),(2,3),(0,1)	(0,1,3,2),(1,0,2,3),(1,0,3,2)
(0,1),(0,1),(0,1)	(1,0)

Result

 Follows are the results for those geminals does not have identity symmetry.

Geminals	Before	After
(0,1),(2,3),(2,4)	120	66
(0,1),(0,1),(2,3)	24	10
(0,1),(2,3),(2,3)	24	10
(0,1),(2,3),(0,4)	120	66
(0,1),(1,2),(3,4)	120	66
(0,1),(2,3),(4,5)	720	120
(0,1),(2,3),(0,1)	24	10
(0,1),(0,1),(0,1)	2	2

What about this?

$$\sum_{a,b} \sum_{m,n} \sum_{u} \int \int \int \int \int \int w_{1}(|\gamma_{a} - \gamma_{b}|) w_{2}(|\gamma_{m} - \gamma_{n}|)) V(r_{u}) d\sigma_{a}(\gamma_{a}) \phi_{b}(\gamma_{b}) \phi_{m}(\gamma_{m}) \phi_{n}(\gamma_{n}) \phi_{u}(\gamma_{u}) \Delta d\gamma_{a} d\gamma_{b} d\gamma_{m} d\gamma_{n} d\gamma_{u}$$

• Where Δ is:

$$\begin{vmatrix} \theta_{a}(\gamma_{a}) & \theta_{a}(\gamma_{b}) & \theta_{a}(\gamma_{m}) & \theta_{a}(\gamma_{n}) & \theta_{a}(\gamma_{u}) \\ \theta_{b}(\gamma_{a}) & \theta_{b}(\gamma_{b}) & \theta_{b}(\gamma_{m}) & \theta_{b}(\gamma_{n}) & \theta_{b}(\gamma_{u}) \\ \theta_{m}(\gamma_{a}) & \theta_{m}(\gamma_{b}) & \theta_{m}(\gamma_{m}) & \theta_{m}(\gamma_{n}) & \theta_{m}(\gamma_{u}) \\ \theta_{n}(\gamma_{a}) & \theta_{n}(\gamma_{b}) & \theta_{n}(\gamma_{m}) & \theta_{n}(\gamma_{n}) & \theta_{n}(\gamma_{u}) \\ \theta_{u}(\gamma_{a}) & \theta_{u}(\gamma_{b}) & \theta_{u}(\gamma_{m}) & \theta_{u}(\gamma_{n}) & \theta_{u}(\gamma_{u}) \end{vmatrix}$$

Result

- The two algorithms also works!
- Nine distinct geminals has been found, and here are the detailed results:

Geminals	Before	After
(0,1),(1,2),(0)	6	6
(0,1),(1,2),(1)	6	6
(0,1),(0,2),(3)	24	24
(0,1),(2,3),(1)	24	14
(0,1),(2,3),(4)	120	38
(0,1),(2,3),(3)	24	14
(0,1),(0,1),(1)	2	2
(0,1),(0,2),(1)	6	2
(0,1),(0,2),(2)	6	6

Conclusion

- We have eliminated overall 840 cases from 1154 cases, and established sufficient data to move to the next step of computing those geminals.
- In the next step, all those cases will be reduced one more time down to where we can use the reduction properties to compute them.