$$H^1$$
 or L^{∞} ?

Yanran Chen and Fan Zhuo

Ohio University

March 13, 2009

Under the direction of Prof. Martin Mohlenkamp

Summary

- Prof. Martin found that L^2 was not enough and $L^2 \cap L^\infty$ might be too much for the orbitals.
- We are trying to explore what if we use H^1 instead of $L^2 \cap L^{\infty}$ for the orbitals.

Definition of Sobolev Spaces $W^{k,p}(\Omega)$ and Sobolev Norm

■ The Sobolev spaces $W^{k,p}(\Omega)$ are defined over an arbitrary domain $\Omega \subset \mathbb{R}^n$ and are vector subspaces of various spaces $L^p(\Omega)$ such that function f and its weak derivatives up to some order k have a finite L^p norm. The Sobolev norm $||\cdot||_{k,p}$, where k is a nonnegative integer and $1 \le p \le \infty$, is:

$$||f||_{k,p} = \left(\sum_{0 \le |a| \le k}^{k} ||D^a f||_p^p\right)^{1/p}, \quad \text{if } 1 \le p < \infty$$

$$||f||_{k,\infty} = \max_{0 \le |a| \le k} ||D^a f||_{\infty}, \quad \text{if } p = \infty$$

LDefinitions, Theorems and Examples

Definition of Sobolev Spaces $W^{k,p}(\Omega)$ and Sobolev Norm

Sobolev spaces with p=2 are especially important because they form a Hilbert space. A special notation has arisen to cover this case:

$$H^k = W^{k,2}$$

In addition, the H^k inner product is defined in terms of the L^2 inner product.

$$\langle u, v \rangle_{H^k} = \sum_{i=0}^k \langle D^i u, D^i v \rangle_{L^2}$$

Hence, the space H^k becomes a Hilbert space with this inner product.

■ In this project, we consider functions in $W^{1,2}$, which is also known as H^1 .

Example

Example: Compute $||\varphi(r)||_{H^1}$, where $(x, y, z) \in \mathbb{R}^3$, $r = \sqrt{x^2 + y^2 + z^2}$, and $\varphi(r) = \sqrt{\frac{Z^3}{\pi}}e^{-Zr}$.

By definition, we have:

$$\parallel \varphi \parallel_{H^1}^2 = \parallel \varphi \parallel_2^2 + \parallel \nabla \varphi \parallel_2^2$$

We can compute,

$$\|\varphi\|_{2} = \left(\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \varphi^{2} dx dy dz\right)^{\frac{1}{2}}$$

$$= \left(4\pi \int_{0}^{+\infty} \varphi^{2}(r) r^{2} dr\right)^{\frac{1}{2}}$$

$$= \left(4Z^{3} \int_{0}^{+\infty} e^{-2Zr} r^{2} dr\right)^{\frac{1}{2}}$$

$$= 1$$

Example

$$\begin{split} \parallel \nabla \varphi \rVert_2 &= \left(\int \int \int \nabla \varphi \cdot \nabla \varphi dV \right)^{\frac{1}{2}} \\ &= \left(\int \int \int \left(\frac{\partial \varphi}{\partial x} \right)^2 + \left(\frac{\partial \varphi}{\partial y} \right)^2 + \left(\frac{\partial \varphi}{\partial z} \right)^2 dx dy dz \right)^{\frac{1}{2}} \\ &= \left(\int \int \int \frac{Z^5}{\pi} e^{-2Z\sqrt{x^2 + y^2 + z^2}} dx dy dz \right)^{\frac{1}{2}} \\ &= \left(\int_0^{+\infty} 4Z^5 e^{-2Zr} r^2 dr \right)^{\frac{1}{2}} = Z \end{split}$$

Therefore,

$$\| \varphi \|_{H^1} = (1 + Z^2)^{1/2}$$

Embedding Theorem

Theorem 1: $W^{k,p}(\mathbb{R}^n) \subseteq W^{l,q}(\mathbb{R}^n)$ if k > l and $k - \frac{n}{n} \ge l - \frac{n}{q}$. **Lemma 1**: $f, g \in H^1 \Rightarrow fg \in L^1 \cap L^2$ Proof.

By Theorem 1, let k = 1, p = 2, n = 3, l = 0 and q = 4, we have $H^1 \subseteq L^4$.

Since $f, q \in H^1, f, q \in L^4$.

Hence, $||fq||_2^4 < ||f^2||_2^2 \cdot ||q^2||_2^2 = ||f||_4^4 \cdot ||q||_4^4 < +\infty$. So,

 $f, q \in L^2$.

On the other hand, $||fg||_1 \leq ||f||_2 \cdot ||g||_2 < +\infty$. Hence, $fq \in L^1$.

Therefore, $fq \in L^1 \cap L^2$

Sobolev Inequality

Theorem 2:Assume that $f(x) \in C_0^{\infty}(\mathbb{R}^n)$, a infinitely differentiable function with compact support. Then for $1 \le p < n$ and $q = \frac{np}{n-p}$, there exists a constant C(n,p) such that

$$||f||_q \le C(n,p)||\nabla f||_p,$$

where
$$c(n,p) = \frac{p-1}{n-p} \left(\frac{n-p}{n(p-1)}\right)^{\frac{1}{q}} \left(\frac{\Gamma(n+1)}{\Gamma(n/p)\Gamma(n+1-n/p)\omega_{n-1}}\right)^{\frac{1}{n}}$$
.

Sobolev Inequality

Example: Consider n=3 and p=2, then q=6 and we have:

$$||f||_6 \le C(3,2)||\nabla f||_2$$

We computed and get: C(3,2)=0.616216. Suppose $f, g \in H^1$, we can show that:

$$||fg||_{2}^{4} \leq ||f^{2}||_{2}^{2} \cdot ||g^{2}||_{2}^{2}$$

$$= ||f||_{4}^{4} \cdot ||g||_{4}^{4}$$

$$\leq ||f||_{2} \cdot ||f||_{6}^{3} \cdot ||g||_{2} \cdot ||g||_{6}^{3}$$

$$\leq C(3,2)^{6} \cdot ||f||_{2} \cdot ||g||_{2} \cdot ||\nabla f||_{2}^{3} \cdot ||\nabla g||_{2}^{3}$$

Theorem 3:

$$\int \frac{|f(x)| \cdot |h(y)|}{|x - y|^{\lambda}} d^n x d^n y \le C_{p,r,\lambda,n} \| f \|_p \cdot \| h \|_q,$$

where $f \in L^p(\mathbb{R}^n)$, $h \in L^q(\mathbb{R}^n)$ and $\frac{1}{p} + \frac{1}{q} + \frac{\lambda}{n} = 2$ with $\lambda < n$. We concern the case that $\lambda = 1$ and n=3. So, we have:

$$\int \frac{|f(x)| \cdot |h(y)|}{|x - y|} d^3x d^3y \le C_{p,q} \| f \|_p \cdot \| h \|_q,$$

where $f \in L^p(\mathbb{R}^3)$, $h \in L^q(\mathbb{R}^3)$ and $\frac{1}{p} + \frac{1}{q} = \frac{5}{3}$. For example, we can have p=1 and $q = \frac{3}{2}$.

Application of L^{∞} and H_1 Spaces

Professor Martin did:

Case 1. Define
$$W_p[f](r) = \int \frac{1}{||r-r'||} f(r') dr'$$
.

$$\int f_1 g_1 W_p[fg] dr$$
 may be unbounded, when $f, g \in L^2$.

Suppose
$$f(r) = \sqrt{\frac{Z^3}{\pi}}e^{-Zr}$$
, we have:

$$\int f^2 W_p[f^2] dr = \int \frac{Z^3}{\pi} e^{-2Zr} \left(\int \frac{1}{||r - r'||} \cdot \frac{Z^3}{\pi} e^{-2Zr'} dr' \right) dr = \frac{5}{8} Z$$

Professor Martin did:

Case 2. We assume that both f and g are in $L^2 \cap L^{\infty}$. Using Hölder's inequality with (L^2, L^2) we have

$$||fg||_1 \le ||f||_2 ||g||_2$$

and also

$$||fg||_2 \le ||f||_{\infty} ||g||_2$$

Thus $fg \in L^1 \cap L^2$.

 $W_p[\cdot]$ is unbounded $L^1 \cap L^2 \to L^2$, but bounded $L^1 \cap L^2 \to L^\infty$

Application of L^{∞} and H_1 Spaces

We did:

Case 3. We assume that both f and g are in H^1 . According to Lemma 1, if f, $g \in H^1$, then $fg \in L^1 \cap L^2$. Hence, $W_p[fg]$ is bounded in L^{∞} .

Hence, when $f_1, g_1, f, g \in H^1$, we have:

$$\int f_1 g_1 W_p[fg] dr \le ||f_1||_2 \cdot ||g_1 \cdot W_p[fg]||_2$$

$$\le ||f_1||_2 \cdot ||g_1||_2 \cdot ||W_p[fg]||_{\infty}$$

$$< +\infty.$$

We did:

Case 4. Since $f, g \in H^1 \Rightarrow fg \in L^{3/2}$, we consider if we can use $fg \in L^{3/2}$ instead of $fg \in L^1 \cap L^2$.

Prove: $f, g \in H^1 \Rightarrow fg \in L^{3/2}$

Proof:

$$\begin{split} ||fg||_{3/2} & \leq ||\nabla(fg)||_1 \\ & = ||\nabla f \cdot g + \nabla g \cdot f||_1 \\ & \leq ||\nabla f \cdot g||_1 + ||\nabla g \cdot f||_1 \\ & \leq ||\nabla f||_2 \cdot ||g||_2 + ||\nabla g||_2 \cdot ||f||_2 \end{split}$$

However, when $fg \in L^{3/2}$, we have:

$$\int f_1 g_1 W_p[fg] dr = +\infty$$

Hence, we give up this attempt.

We derived:

$$\begin{split} \infty > C &\geq \sup_{f,g} \frac{\int \int \frac{f(x)g(x)}{||x-y||} dx dy}{||f||_1 ||g||_{3/2}} \qquad (Theorem \ 3) \\ &= \sup_{f,g} \int \frac{f(x)}{||f||_1} \int \frac{\frac{g(y)}{||x-y||}}{||g||_{3/2}} dy dx \qquad (Fubini) \\ &= \sup_{g} ||\int \frac{\frac{g(y)}{||x-y||} dy}{||g||_{3/2}} ||_{\infty} \qquad (L^1 \ and \ L^{\infty} \ are \ dual \ spaces) \\ &= \sup_{g} ||\int \frac{g(y)}{||g||_{3/2}} \cdot \frac{1}{||x-y||} dy ||_{\infty} \end{split}$$

$$= \sup_{g} || \int \frac{g(z-x)}{||g||_{3/2}} \cdot \frac{1}{||z||} dz ||_{\infty}$$

$$= \sup_{g} \int \frac{g(z)}{||g||_{3/2}} \cdot \frac{1}{||z||} dz$$

$$= || \frac{1}{||z||} ||_{3} = \infty \quad (L^{3/2} \text{ and } L^{3} \text{ are dual spaces})$$

Can you find the mistake?