Name: \qquad
No books, notes, or calculators are allowed.
Show your work and give reasons for your conclusions.
Use the back of the sheet if you need more space.

$\#$	possible	score
1	20	
2	10	
3	30	
4	40	
	100	

1. Compute the following limits. If you use the sandwich theorem or L'Hôpital's rule, then say so.
(a) $\lim _{x \rightarrow \infty} \frac{e^{2 x}}{x^{2}}=$
(b) $\lim _{x \rightarrow 0^{+}} x \ln (x)=$
2. Find the function f that has $f^{\prime}(x)=x^{2}$ and $f(2)=5$.
3. (a) Based on the definition of the definite integral, use $n=4$ rectangles to approximate

$$
\int_{2}^{3} \sin (\sqrt{x+2}) d x
$$

(b) If $f(0)=0$ and $3 \leq f^{\prime}(x) \leq 5$, what is the smallest that $\int_{0}^{4} f(x) d x$ can be? What is the largest it can be?
(c) Compute the area of the region enclosed by the curves $y=x^{2}$ and $y=2-x$.
4. Compute:
(a) $\frac{d}{d x} \int_{2}^{x} \ln (t+5) d t$
(b) $\frac{d}{d x} \int_{2}^{5} \sin \left(\left(t^{3}+7\right)^{2}\right) d t$
(c) $\int_{2}^{2} \sin \left(\left(t^{3}+7\right)^{2}\right) d t$
(d) $\int\left(3^{x}+x^{-3}\right) d x$
(e) $\int\left(x^{1 / 3}+3 x^{-1}\right) d x$
(f) $\int_{2}^{4} 5 \sqrt{x} d x$
(g) $\int_{3}^{7} 5 \sin (x) d x$
(h) $\int \frac{x^{2}-1}{x} d x$

