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Formula of Total Probability, Bayes’ Rule, and Applications 
 
 

 Recall that for any event A , the pair of events A  and A  has an intersection 

that is empty, whereas the union A A∪  represents the total population of interest.  

In fact, this pair of events { },A A  is a special case of a partition of the sample 

space, hereinafter denoted by S . 
 
 
1.  Partition of Sample Space and Formula of Total Probability. 
 
 
Definition of Partition.  A collection of events { }1 2, , , nS S SL  of a certain 

sample space (or population) S is called a partition if 
 (i) 1 2, , , nS S SL  are mutually exclusive events; 

 (ii) 1 2 nS S S S∪ ∪ ∪ =L . 
 
Illustrative Example.  In the nineteenth century G. Mendel conducted a famous 
experiment that led to the first announcement of elementary genetic principles.  He 
bred hybrid strains of peas and simultaneously observed the color (green or 
yellow) and smoothness (round or wrinkled) of the offspring peas.  If S  denotes 
the set of all peas involved in the pea-breeding experiment, and 
 1S  denotes the subpopulation of round and green peas; 

 2S  denotes the subpopulation of round and yellow peas; 

 3S  denotes the subpopulation of wrinkled and green peas; 

 4S  denotes the subpopulation of wrinkled and yellow peas; 

then { }1 2 3 4, , ,S S S S  represents a partition of S . 

 
 
Formula of Total Probability. 
 
 
 Assume that the set of events { }1 2, , , nS S SL  constitutes a partition of 

the sample space S .  Assume that for every i , 1 i n≤ ≤ , 

( ) 0iP S > . 

Then for any event A , we have  

(1)    ( ) ( ) ( )
1

|
n

i i
i

P A P S P A S
=

= ⋅∑ . 
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Proof.  It follows from the multiplication law of probability that for every i , 
1 i n≤ ≤ , 

( ) ( ) ( )|i i iP S P A S P AS⋅ = . 

On the other hand, since the events 1 2, , , nS S SL  are mutually exclusive, we 

have that the events 1 2, , nAS AS ASL  are also mutually exclusive.  In addition 
note that  
(2)    1 2 nAS AS AS A∪ ∪ ∪ =L . 

It would be instructive if the student tries to verify (2) by use of a Venn diagram.  
Then an application of the addition law of probability to (2) gives (1). 
 
 
Illustrative Example.  A diagnostic test for a certain disease is known to be 95% 
accurate, i.e., if a person has the disease, the test will detect it with probability 
0.95.  Also, if the person does not have the disease, the test will report that they do 
not have it with the same probability 0.95.  In addition, it is known from previous 
data that only 1% of the population has this particular disease.  What is the 
probability that a particular person chosen at random will be tested positive? 
 
 
Solution.  Let 

   T +  denote the event that a person is tested positive; 

   T −  denote the event that a person is tested negatively; 
   D  denote the event that a person has the disease. 
 
Then it follows from the above stated conditions that 

( ) 0.01P D = ,  ( ) 0.99P D = , 

( )| 0.95P T D+ = , and ( )| 0.95P T D− = . 

 
 In particular, since 

( ) ( )
0.95

| | 1P T D P T D− ++ =
14243

, 

we have that 

( )| 0.05P T D+ = . 

Now we apply the formula of total probability from (1) with A T += , 2n = , 

1S D= , and 2S D= , to obtain 
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( ) ( ) ( ) ( ) ( )| |

(0.95) (0.01) (0.05) (0.99)

0.059.

P T P T D P D P T D P D+ + += ⋅ + ⋅

= ⋅ + ⋅
≈

 

 
 
2.  Bayes’ Rule. 
 
 
 This important rule enables one to compute a conditional probability when 
the original condition now becomes the event of interest. 
 Assume that the set { }1 2, , , nS S SL  constitutes a partition of the sample 

space .S   Assume that for each i , 1 i n≤ ≤ , 

( ) 0iP S > . 

Fix any event A .  Then for any given j , 1 j n≤ ≤ , 

(3)    ( ) ( ) ( )
( ) ( )

1

|
|

|

j j
j n

i i
i

P S P A S
P S A

P S P A S
=
∑

⋅
=

⋅
. 

The key thing to note about Bayes’ theorem is that the information that will be 
given in a problem will be the conditional probabilities ( )| , 1iP A S i n≤ ≤ , that 
appear on the right-hand side of the equation, whereas what is sought is one of the 

conditional probabilities, ( )|jP S A , where the events jS  and A  are “reversed” 

from the given information.  I.e., given that A  occurred, what is the probability it 
happened “through jS ”. 

 
Proof of Bayes’ theorem.  Note that by the multiplication law of probability, the 
numerator of the fraction on the right-hand side of (3) can be rewritten as 

( ) ( ) ( )|j j jP S P A S P AS⋅ = . 

At the same time, by the formula of total probability (formula (1) above), the 
denominator of the fraction on the right-hand side of (3) is equal to 

( ) ( ) ( )
1

|
n

i i
i

P S P A S P A
=
∑ ⋅ = . 

Hence, the right-hand side of (3) is equal to 

( )
( ) ( )|

j
j

P AS
P S A

P A
=  

by the definition of conditional probability. 
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3.  Examples. 
 
 
Illustrative Example 1.  It is quite common that different illnesses produce 
similar or even identical symptoms.  Suppose that any one of the illnesses ,X  ,Y  

or Z  lead to the same set of symptoms, hereafter denoted as .U   For simplicity 
assume that the illnesses ,X  ,Y  and Z  are mutually exclusive and that there are 
no other illnesses leading to the same set of symptoms.  Suppose the probabilities 
of contracting these three illnesses are: 

( ) 0.03P X = ,  ( ) 0.01P Y = ,  ( ) 0.02P Z = , 

and that the chances of developing the set of symptoms U , given a specific illness 
are: 

( )| 0.85P U X = ,  ( )| 0.92P U Y =   ( )| 0.80P U Z = . 

If a sick person develops the set of symptoms ,U  what are the chances he or she 
has illness X ? 
 
 
Solution.  First note that the set of events X , Y , and Z  together do not represent 
a partition.  Therefore, define H  to be the event of not suffering from any of X , 
Y , or Z , i.e., the complement of the union of ,X ,Y  and ,Z  

H X Y Z= ∪ ∪ . 
Then we have 

( ) ( ) ( ) ( )1

1 0.03 0.01 0.02

0.94.

P H P X P Y P Z= − − −

= − − −
=

 

However, 

( )| 0P U H = . 
Applying Bayes’ rule yields that the conditional probability that given the 
symptoms ,U  that a person indeed has the illness X , viz., ( )|P X U , is 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

|
|

| | | |

(0.85) (0.03)

(0.85) (0.03) (0.92) (0.01) (0.80) (0.02) 0

0.5029.

P U X P X
P X U

P U X P X P U Y P Y P U Z P Z P U H P H

⋅
=

⋅ + ⋅ + ⋅ + ⋅

⋅=
⋅ + ⋅ + ⋅ +

=
Note that the data given at the outset of the problem above involved the 
conditional probabilities of “U  given ,X  U  given ,Y  U  given Z, and U  given 

H ”, but what was sought was the conditional probability of “ X  given U ”, which 
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involved the reverse of the conditions of the given data in the problem.  This is the 
prototypical situation for the application of Bayes’ theorem. 
 
 
Illustrative Example 2.  In this example we consider a situation somewhat like 
the earlier example above on pp. 2 and 3 of this insert following the formula of 
total probability.  Suppose we are concerned with medically testing for leukemia.  
Let 

 T +  denote the event that the test is positive, suggesting the person has 
leukemia; 

 T −  denote the event that the test is negative, suggesting the person does not 
have leukemia; 

 L  denote the event that the person tested has leukemia; 
 L  denote the event that the person tested does not have leukemia. 
 
 It is the case that the medical test for leukemia is not perfectly accurate.  
Most of the time, if one has leukemia, the test will be positive.  Past records 

indicate that ( )| 0.98P T L+ = .  Similarly, if one does not have leukemia, the test 

is usually negative.  Again, it is known that ( )| 0.99P T L− = . All this 

notwithstanding, there are people who sometimes test positively, but do not , in 
fact, have the disease; and some who test negatively, but do indeed have the 
disease.  If we also know that ( ) 0.000001P L = , find: 

 (a)  the probability ( )|P L T +  of a false positive test; 

and 

 (b)  the probability ( )|P L T −  of a false negative test. 

 
 
Solution.  (a)  Note again that in this problem we are given the conditional 

probabilities of “T +  given L  and T −  given L ”, but are asked to find the 

conditional probabilities that have the ,T +  T −  events and the ,L  L  events 

“reversed”.  Hence we employ Bayes’ rule.  This yields 
 

( ) ( ) ( )
( ) ( ) ( ) ( )

|
|

| |

P T L P L
P L T

P T L P L P T L P L

+
+

+ +

⋅
=

⋅ + ⋅
. 

Since 

( ) ( )1 0.999999P L P L= − = , 
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and 

( ) ( )| 1 | 0.01P T L P T L+ −= − = , 

we obtain 

( ) (0.01) (0.999999)
| 0.99991

(0.01) (0.999999) (0.98) (0.000001)
P L T + ⋅

= ≈
⋅ + ⋅

. 

In particular, this implies that 

( ) ( )| 1 | 0.00009P L T P L T+ += − ≈ . 

 
 

(b)  Try  to compute ( )|P L T −  in an analogous manner as an exercise. 

(Answer:  82.020204 10 .−× ) 


