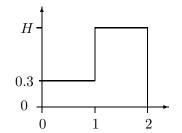
The fourth test is in class on Friday 3 March.


Here are some sample questions, so that you have an idea of what to expect.

1. (a) Let Z be a standard normal random variable. Using the table, compute:

i.
$$P[Z < -0.95] =$$

ii.
$$P[Z \ge 1.42] =$$

- iii. The 90-th percentile of Z.
- (b) Let X be a random variable distributed as N(7,5). Compute $P[X \le 8]$.
- (c) Let X be a binomial random variable with n=100 and p=0.7. Estimate $P[60 \le X \le 65]$ using the standard normal table.
- 2. The height of male US college students is normally distributed with mean 67 inches and standard deviation 3 inches. If a sportscar manufacturer wants the seats to fit the middle 70% of these students, then what range of heights should they target?

- 3. The probability density function f(x) for the random variable X is given by the graph on the right.
 - (a) Find the value of H that makes f(x) a legal probability density function.
 - (b) Find the median.
- 4. A large population is described by the probability distribution on the right. Let X_1 , X_2 be a random sample of size 2 from this distribution.
- $\begin{array}{c|cc}
 x & f(x) \\
 \hline
 2 & .2 \\
 4 & .3 \\
 6 & .5
 \end{array}$
 - (a) In the following table, list the possible samples, their probabilities, and their means.

(x_1, x_2)	probability	\bar{x}

(b) In the following table, give the sampling distribution of \bar{x} .

$$\frac{\bar{x} \mid f(\bar{x})}{\mid x \mid}$$

(c) Compute the expectation of \bar{x} .