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A problem from mathematical neuroscience

Some recordings from certain neuronal tissues (of real organisms)
reveal the following pattern: Time seems to be partitioned into
episodes with surprisingly sharp boundaries. During one episode, a
group of neurons fires, while other neurons are at rest. In the next
episode, a different group of neurons fires. Group membership may
vary from episode to episode, a phenomenon called dynamic
clustering.
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How dynamic clustering looks like
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How to model dynamic clustering

Time seems to be partitioned into episodes with surprisingly sharp
boundaries. During one episode, a group of neurons fires, while
other neurons are at rest. In the next episode, a different group of
neurons fires. Group membership may vary from episode to
episode.

Why? How can we mathematically explain this phenomenon?

Of course, something like this will occur in many discrete-time
dynamical systems, but this does not give an explanation as the
episodes are built right into the definition of time.

Does the phenomenon occur in biologically realistic ODE
models?
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An ODE model of neuronal networks
by Terman D, Ahn S, Wang X, Just W, Physica D. 2008

Each excitatory (E -) cell satisfies
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We have a plausible model, but ...

Let us call the model that we just described M.

The model M does predict dynamic clustering.

The architecture involves a layer of excitatory neurons and a
layer of inhibitory neurons that mediate the firing of the
excitatory neurons.

Individual neurons are modeled by a version of the
Hodgkin-Huxley Equations, which are nonlinear DEs.

These are difficult to analyze mathematically even for single
neurons, let alone for large networks.

Can we study the dynamics of M by means of a simpler,
approximate model N?
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Mathematical neuroscience for the rest of us

The following is true in at least some neuronal networks.

Neurons fire or are at rest.

After a neuron has fired, it has to go through a certain
refractory period when it cannot fire.

Neurons are connected via synapses. Through a given
synapse, the presynaptic neuron may send firing input to the
postsynaptic neuron.

A neuron will fire when it has reached the end of its refractory
period and when it receives firing input from a specified
minimal number of other neurons.

This is of course way too simple ...

but let us build a class of simple models N of neuronal networks
based on these facts.
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Discrete dynamical system models N(D)

Let D = ([n],AD) be a digraph on [n] = {1, . . . , n}.

We describe here only the simplest case when all refractory periods
and firing thresholds are 1.

A state ~s(t) at the discrete time t is a vector:
~s(t) = (s1(t), . . . , sn(t)) where si (t) ∈ {0, 1} for each i .
The state si (t) = 0 means neuron i fires at time t.

Dynamics of N(D):

If si (t) < 1, then si (t + 1) = si (t) + 1 = 1.

If si (t) = 1, and there exists at least one neuron j with
sj(k) = 0 and < j , i > ∈ AD , then si (t + 1) = 0.

If si (t) = 1 and there does not exist a neuron j with sj(t) = 0
and < j , i > ∈ AD , then si (t + 1) = 1.

N(D) is a Boolean dynamical system.
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An example
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Reducing neuronal networks to discrete dynamics,
by Terman D, Ahn S, Wang X, Just W, Physica D. 2008

Theorem

For each ODE model M of neuronal networks as described above,
if the intrinsic and synaptic properties of the cells are chosen
appropriately, the dynamics of M will exhibit dynamic clustering.
Moreover, there exists a discrete model N = N(D) that correctly
predicts, for a large region U of the state space of M and all
times t, which neurons will fire during which episodes.

The theorem essentially tells us that as long as M is a biologically
sufficiently realistic model of a given neuronal network, then so is
the corresponding model N.

The discrete models N(D) are much more tractable than the ODE
models M. In particular, they permit us to study the dependence
of the dynamics on the network connectivity D.
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The keyword is “more”

I wrote: “The discrete models N are much more tractable than the
ODE models M.”

On the one hand, each such model is a finite object, and in
principle each property of the dynamics can be determined by an
exhaustive search algorithm.

On the other hand, at least for the version with higher firing
thresholds, no feasible (polynomial-time) algorithm exists that will
even tell you whether a given state ~s∗ will eventually be reached
from a given initial state ~s(0) (W. Just, collected unpublished
notes).

In this sense, the dynamics of our very simple models N(D) are
already as complex as the dynamics of any kind of finite-state
discrete models of neuronal dynamics that one could possibly
construct.
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Published work on connectivity D vs. dynamics of N(D)

W. Just, S. Ahn, and D. Terman (2008); Minimal attractors in
digraph system models of neuronal networks. Physica D 237,
3186–3196.

Two phase transitions for dense random connectivities.
S. Ahn, Ph. D. Thesis (OSU) and S. Ahn and W. Just (2012);
Digraphs vs. Dynamics in Discrete Models of Neuronal Networks.
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
17(5) 1365–1381.

Characterizes possible dynamics for some basic connectivities.
W. Just, S. Ahn, and D. Terman (2013); Neuronal Networks: A
Discrete Model. In Mathematical Concepts and Methods in Modern
Biology. R. Robeva and T. Hodge, eds., Academic Press, 2013,
179–211.

Elementary introduction and overview. Suitable as basis for REU.

W. Just and S. Ahn (2014); Lengths of attractors and transients in

neuronal networks with random connectivities. Preprint.

arXiv:1404.5536 A shortened journal version has been submitted.
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Why do we want to study this question for random
connectivities?

Amazing fact: There exists a little roundworm, Caenorhabditis
elegans, with 302 neurons, for which each single synapse has been
mapped!

For higher organisms though, our knowledge of the actual neuronal
wiring is only very fragmentary. We may, however, have some
information about global network parameters such as the degree
distribution. For example, there are about 1012 neurons and 1015

synaptic connections in the human brain, which gives a mean
degree of about 1000 for the network.

The architecture of actual neuronal networks has been shaped by
evolution and to some extent by learning, both of which are
stochastic processes. Thus it is reasonable to assume that the
actual architecture exhibits features that are reasonably typical for
a relevant probability distribution on digraphs.
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Basics of network dynamics

The trajectory of initial state ~s(0) is the sequence
(~s(0),~s(1), . . . ,~s(t), . . . )

States that are visited infinitely often by the trajectory are
called persistent states. Since the sate space is finite, every
trajectory must eventually reach a persistent state. The set of
these persistent states is called the attractor of the trajectory.

Transient states are visited only once. Their sequence is an
initial segment of the trajectory, called its transient (part).

The set {(1, . . . , 1)} is the unique steady state attractor. All
other attractors, if such exist, are called periodic attractors.
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The basic setup
Just W and Ahn S arXiv:1404.5536 (2014)

Let π be a function that assigns to each positive integer n a
probability π(n).

Randomly draw an Erdős-Rényi digraph D on [n] where each
potential arc is included with probability π(n).

Randomly draw an initial condition ~s(0) in the chosen
network.

Let α be the length of the attractor and let τ be the length of
the transient of the trajectory of ~s(0).

Explore how α and τ scale on average w.r.t. the number n of
neurons.
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Scaling laws for α and τ

We are interested in how the medians and all fixed percentiles of α
and τ scale as n→∞.

Why percentiles?

If the means of α or τ do scale differently from the percentiles,
then this must be due to rare outliers. Experimental studies of a
actual neuronal networks and simulation studies of their models are
unlikely to detect extremely rare outliers.

Thus theoretical results on the scaling of fixed percentiles will in
general be better predictors of simulation results than theoretical
results on the means.
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Why are these scaling laws relevant?

Biological relevance: Several of the neuronal tissues in which
dynamic clustering has been observed are part of olfactory systems.
There is an ongoing debate among neuroscientists whether odors
are coded in the attractors or in the transients of neuronal
dynamics. The first coding requires sufficiently many different
(long) attractors, the second requires sufficiently long transients.

Mathematical relevance: Classes of Boolean systems can be
roughly categorized as those exhibiting predominantly ordered
dynamics and those exhibiting predominantly chaotic dynamics.
The former are characterized (among other hallmarks) by relatively
short transients and attractors; the latter by relatively long ones.
The difference between “short” and “long” often corresponds to
polynomial vs. exponential scaling with system size n. The
capability of the system to perform complex computations appears
to require that its dynamics falls into the critical regime, right at
the boundary between order and chaos.
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Some basic tools for our study

Let γ denote the maximal length γ of a directed path in D.
We call D supersimple if it is either acyclic or contains exactly one
directed cycle C and satisfies an additional condition.

Proposition

Assume D is acyclic. Then α = 1 and τ + 1 ≤ γ.

Lemma

Assume D is supersimple and contains a directed cycle of length L.
Then

(i) α is a divisor of L.

(ii) The percentiles of τ scale like Θ(γ).

Since we randomly draw initial states, part (ii) takes the form of a
scaling law.
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α and τ for very sparse connectivities

Assume π(n) = c
n for c < 1 (the subcritical case).

It is (well) known that in the case a.a.s. (asymptotically almost
surely, that is, with probability approaching 1 as n→∞), the
upstream and downstream connected components of the
corresponding Erdős-Rényi digraph D are all simple (contain at
most one directed cycle).

We first extend this result to supersimple and then derive the
following consequence:

Theorem (The subcritical case)

Assume π(n) = c
n with c < 1. Then

(i) Each fixed percentile of α scales like O(1).

(ii) Each fixed percentile of τ scales like Θ(log n).

Thus the subcritical case exhibits hallmarks of highly ordered
dynamics.
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The critical window

It is also (well) known that when π(n) is increased from c`
n to cu

n
for some c` < 1 < cu, then a so-called giant strongly connected
component that comprises a fixed fraction of all nodes appears
a.a.s. in the corresponding Erdős-Rényi digraph D.

There have been detailed studies of the expected structure of D in
the so-called critical window where π(n) ∼ 1

n .

Roughly speaking, these studies have discovered distinct structural
properties in the lower end, middle part, and upper end of the
critical window.

We made some contributions by showing that in (much of) the
lower end a.a.s. the upstream components will remain supersimple,
but many directed cycles with distinct lengths appear.
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The lower end of the critical window

Theorem (Lower end of the critical case)

Assume π(n) = 1−n−β
n , where 0 < β < 1/4. Then with probability

arbitrarily close to 1 as n→∞
(i) τ scales like O((log n)nβ).

(ii) τ scales like Ω(nβ).

(iii) α ≤ e
√
n ln n+o(1) and thus scales subexponentially.

(iv) α ≥ eΩ(log n log log n) and hence scales faster than any
polynomial function.

We observe one hallmark of the critical regime for the dynamics.
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What happens in the middle of the critical window?

One would conjecture that for π(n) = 1
n both α and τ scale even

faster. Simulations studies indicate as much.

However, our arguments so far relied on having almost perfect
control over the dynamics, as the structures that we use as tools
(directed cycles in upstream components) remain neatly
segregated. Higher up in the critical window we lose all such
control.

Thus it seems very challenging to develop good tools for exploring
the dynamics of our system deep inside the critical window.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Transients and Attractors in Random Neuronal Networks



What happens above the critical window?

When π(n) = c
n for some constant c > 1, we regain a certain

amount of control.

In this case we can assume that there exists a giant strongly
connected component. If we remove it together with all nodes
downstream of it, the remaining digraph will exhibit the same
features as in the subcritical case: small and supersimple upstream
components. This essentially reduces the problem to studying
what happens inside the giant component.
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Eventually minimally cycling nodes

Definition

A node i is eventually minimally cycling if there are only finitely
many times t with si (t) = si (t + 1) = 1.

Intuitively, a node is eventually minimally cycling if from some time
on it fill always fire as soon as it has reached the end of its
refractory period.
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The supercritical case

Theorem (The supercritical case)

There exists a constant ccrit with 1 ≤ ccrit ≤ 2 such that if
π(n) = c

n for some fixed c > ccrit :

(i) A.a.s. all nodes in the giant component will be eventually
minimally cycling.

(ii) Each fixed percentile of α scales like O(1).

(iii) Each fixed percentile of τ scales like Ω(log n).

(iv) There exists a constant k = k(c) > 0 such that each fixed
percentile of τ scales like O(nk).

We observe hallmarks of highly ordered dynamics.
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Open problems: The big one

Problem 0: What is ccrit , really?

We showed that 1 ≤ ccrit ≤ 2.

We conjecture that ccrit = 1.

Simulation results indicate as much.
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Open problems: An even bigger one

Define locally modified Erdős-Rényi (di)-graphs as follows:

Consider an algorithm A that takes as input a (di)graph D
on [n] with some labeling of the vertices with a fixed set of
labels, and outputs another labeled (di)graph A(D) on [n].

The algorithm decides whether or not < i , j > is an arc (edge)
of A(D) only based on the structure and labels of subgraph
induced by all nodes that can be reached from i or j via a
(directed) path of length ≤ N, where N is fixed and does not
depend on n.

Let D be an Erdős-Rényi (di)graph.

Generate the labels independently, with specified probabilities
of assigning a given label.

This defines a family of distributions A(D).

What methods can be used to study such distributions?
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More open problems

Problem 1: Find the exact scaling law for the length τ of the
transient in the supercritical case, or at least narrow the gap
between Ω(log n) and O(nk(c)).

Problem 2: Assume π(n) = 1−n−β
n , where 0 < β < 1/4. Find the

exact scaling law for the length τ of the transient.

At this time we know that it is between Ω(nβ) and O((log n)nβ).

Problem 3: Does there exist π(n) such that τ(n) scales faster
than any polynomial?

At this time we don’t even know whether there exists π(n) where
τ(n) scales like Ω(n).

Problem 4: Does there exist, for any n, a network N(D) on [n]
that contains any attractor of length α > g(n), where

g(n) ∼ e
√
n ln n+o(1) is Landau’s function?
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Open problems for related systems

Problem 5: Investigate α and τ for analogous systems with larger
firing thresholds.

We have some results, but a full characterization will require new
methods.

Problem 6: Investigate the behavior of α and τ for other types of
random connectivities.

Some empirical results indicate that the degree distributions in
actual neuronal networks may be closer to scale-free than to
normal. Thus making D a random scale-free network may be more
relevant to neuroscience. But we had to start our investigations
somewhere.

Problem 7: Try to generalize our results to systems with other
types of rules for the firing of neurons.
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