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Abstract

We characterize stochastic matrices A which satisfy the equation (AP)T = A™
where p < m are positive integers.

i. INTRODUCTION

An n X n matrix is called stochastic if every entry is nonnegative and each row
sum is one. The transpose of the matrix A will be denoted by AT. A matrix A is
doubly stochastic if both A and AT are stochastic.

Sinkhorn [5] characterized stochastic matrices A which satisfy the condition
AT = AP, where p > 1 is a positive integer. Such matrices were called power
symmetric in [5]. In this paper we consider a generalization. Call a square matrix A
generalized power symmetric if (AP)T = A™, where p < m are positive integers. We
give a characterization of generalized power symmetric stochastic matrices, thereby
generalizing Sinkhorn’s result. The proof makes nontrivial use of the machinery of
generalized inverses. In view of the fact that (A™); , represents the probability of
an event to change from the state 7 to the state j in n units of time, the reader may
find it interesting to interpret the condition (AP)T = A™ on the matrix A = (A, ;).

The paper is organized as follows. In the next section, we introduce some defi-
nitions and prove several preliminary results. The main results are proved in
Section 3.

2. PRELIMINARY RESULTS

If Aisan m x n matrix, then an n x m matrix G is called a generalized inverse
of Aifl AGA = A. If Ais a square matrix, then G is the group inverse of A if
AGA = A,GAG = G and AG = G A. We refer to ([1]. [2], [3]) for the background
t This work was done while S.K. Jain was visiting indian Statistical Institute in Nov.-Dec.
1996 and July-Aug. 1997. He would like to express his thanks for the warm hospitality he
enjoyed during his visits as always.
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concerning generalized inverses. It is well known that A admits group inverse if and
only if rank(A) = rank(A?), in which case the group inverse. denoted by A¥, is
unique.

If Aisan n x n matrix, then the index of A, denoted by index(A), is the least
positive integer k such that rank(A¥) = rank(A*¥*1). Thus A has group inverse if
and only if indez(A) = 1.

If Ais an mx n real matrix, then the n x m matrix G is called the Moore-Penrose
inverse of A if it satisfies AGA = A,GAG = G,(AG)T = AG.(GA)T = GA. The
Moore-Penrose inverse of A, which always exists and is unique, is denoted by At
A real matrix A is said to be an EP matrix if the column spaces of A and AT are
identical. We refer to {1] or [3] for elementary properties of EP matrices.

Lemma 1: Let A be a real n x n matrix and suppose (AP)T = A™. where p < m
are positive integers. Then the following assertions are true:

(i) rank(AP) = rank(A*), k> p
(ii) index(A) <p
(iil) indez(AP) =1
(iv) AP is an EP matrix

(v) (AP)# = (A7)

Proof:

(i) Clearly, rank(AP) > rank(A*) > rank(A™) for p < k < m. Since (A7) =
A™. we have

rank(AP) = rank(AP)T = rank(A™)
and thus rank(A?) = rank(AF), p < k < m. It follows that rank(A?) =
rank( A%), k> p.
(ii) By (i), rank(AP?) = rank(AP*") and hence index(A) < p.
(iil) By (i), rank(AP) = rank(A?P) and hence indez(AP) = 1.

(iv) Since rank(AP) = rank(A™), the column space of A” is the same as that of
A™. Also. since {AP)T = A™. the column space of A™ is the same as the row
space of AP, written as a set of column vectors. Therefore. the column spaces
of A? and (A?)T are identical and A? is an EP matrix.
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(v) It is known (see, for example, (3], p. 129) that for an E'P matrix the group
inverse exists and coincides with the Moore-Penrose inverse.

Lemma 2: Let A be an n x n matrix such that (A?)T = A™, where p < m are
positive integers. Let y = m — p. Then AP = AP A (A™MT for any integer i > 0.

Proof: We have

AP = (Ap+7)T (1)
= (an)T(am)’
= AP+‘7(A’Y)T
= AarAamT
= A A AP (AT AT
= A"AP(AM)

Repeating the argument, we get

AP = AT AP(AT = AP A (AT
for any ¢ > 0 and the proof is complete.

Lemma 3: Let A be a nonnegative n x n matrix and suppose (AP)T = A™, where
p < m are positive integers. Then (AP)# exists and is nonnegative.

Proof: By Lemma 1 (iii), index(AP) = 1 and therefore (AP)¥# exists. Let
4 = m — p. Setting i = p in Lemma 2, we get

AP = APAP’Y(AP’))T — AP APY APY)Y

in view of (4P)T = A™. Thus, since y > 1,

AP = A% AP 1) glpty)y

where A° is taken to be the identity matrix. Let B = APO=D AP+ Then it
follows from the previous equation that APBA” = AP. Also. since B is a power of
A.APB = BAP. Thus (AP)#* = BAPBis also a power of A and hence is nonnegative.

Lemma 4: Let A be a stochastic n X n matrix and suppose (APYT = A™, where
p < m are positive integers. Then there exists a permutation matrix P such that
PAPT is a direct sum of matrices of the following two types I and II:
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T Cy; where CY, = zzT.z > 0 for some positive integer v.

0 Ci2 0 - 0 ]
0 0 Coz --- 0
T where there exists a positive integer u such
0o .- Cacrd
L Car O - 0
that (C12 Caz - Cq1)* = zlxlT, oo (Cqp Cr2 - Ca1q)¥ = :zrdxfir for some
positive vectors Ty, -+ ,Z4.

Proof: Let C = AP(AP)#. Since (AP)* = (AP)! by Lemma 1, C is symmetric.
By Lemma 3, (AP)# is nonnegative and hence C is nonnegative. Also. C is clearly
idempotent. As observed in the proof of Lemma 3. (AP)# is a power of A and hence
C is also a power of A.

The nonnegative roots of symmetric, nonnegative, idempotent matrices have
been characterized in [4], Theorem 2. Applying the result to C. we get the form
of A asserted in the present result. We remark that according to Theorem 2 of
(4], a type III summand is also possible along with the two types mentioned above.
However, a matrix of this type is necessarily nilpotent and since A is stochastic,
such a summand is not possible.

Remark: Using the notation of Lemma 4, it can be verified that the type II
summand given there has the property that its (du) — th power is

127 0 0
0 el - 0
0 0 xd;rg

This observation will be used in the sequel.
We now introduce some notation. Denote by J,xn. the m x n matrix with

ecach entry equal to one. If ny, - -, ng are positive integers adding up to n, then
Jiny. « ng) Will denote the n x n matrix
- . -
0 E Jann? . 0 A 0
0 0 ar Jnaxng 0
1
. 0 0 T E Jnd_l XMy
L E JndX’lll O ce 0 i
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where the zero blocks along the diagonal are square, of order ny, ny, --- ,ng, respec-
tively. We remark that if d = 1, then Ji,,) = # Iy xny -

From now onwards, we make the convention that when we deal with integers
ny. --- ,ng. the subscripts of n should be interpreted modulo d. Thus, for example,
Ng41 = M1,M—2 = N4_7 and so on.

Lemma 5: Let ng, ---.nq be positive integers summing to n and let p < m be
positive integers. Let p = pmodd,m = i mod d where 0 < p < d—1,0< p' <d-1.
Let S = J(n;, ... .ny)- Then the following conditions are equivalent:

i. (57T = 5™

ii. (a)d divides both p and m, or (b) d divides neither p nor m. p+p' =
dandni:niﬂ,:, 1§1§d

iii. (a)d divides both p and m, or (b) d divides neither p nor m, u+4' =
d and n; = njps, 1 <i<d, whered = (u,pt)is the g.c.d. of 4 and
M.

Proof: We first observe that

;1;Jn1xn1 0 0
) 0 a Jngxng 0
- .
0 0 R T
ng ndgXng

$95 = § and so §¢S* = 5, for all ¢ > 0.
Note (%) implies d divides p if and only if d divides m. We first prove (i) e (i1):
Assume d divides neither p nor m. Let (§™); denote the (i,7)-block in the
partitioning of S¥, in conformity with the partitioning of §,1 < ¢,j < d. Similarly
(§#");; will denote the (1. j)-block in 54 A straightforward multiplication involving
partitioned matrices shows that

"]7lxxnu+l7 2f j = (:u + l) TnOd d
0. otherwise

1
(5*)i; = { Hats

Similarly,

it

1 - - / . |
(5", = { i s 3= (1) mod ¢

0. otherwise

Now



(5")5 =

0, otherwise

{ n;i1+J J"#+JX"J’ ifi= (H_*_j) mod d

or equivalently,

(5“)3; { n“1+1 Tryugy xmy s if j=(i—p)modd

0. otherwise

Thus (S#)T = §* holds if and only if y' + i = (i — p) mod d and n; = ny4i. Since
(S7)T = S™ holds if and only if ($)T = §#_ it follows that under the condition d
does not divide p and d does not divide m, (i) holds if and only if p + u/ = d and
Ny = Nigpurs 1<i1<d.

Furthermore, because d | p and d | m trivially implies (S7)T = §™, the proof of
(i) < (i7) is completed.

If (i) holds, then n; = nyryi = ng_yuti; 1 <1< d. Hence

N; = Nop'—Bu+Pd+i = Map'—futi

where a. 3 are positive integers, 1 < ¢ < d. Choosing a. such that § = ap' — fu.
we get n; = ngyq, 1 < ¢ < d. This proves (111).

Conversely, if (iii) holds, then n; = n,4; since ¢ divides u', establishing (i2).
This completes the proof.

3. THE MAIN RESULTS
We are now ready to give a characterization of generalized power symmetric
stochastic matrices. In the next result we consider matrices of index one.

Theorem 1: Let A be a stochastic n x n matrix with indez(A) = 1 and let p < m
be positive integers. Then (AP)T = A™ if and only if there exists a permutation
matrix P such that PAPT is a direct sum of matrices of the following two types |
and II

1. kak for some positive integer k

I1. d x d block partitioned matrices of the form J (ny. - ny) Satisfying (a )d|pand
d | m, or (b) d divides neither p nor m such that if p = p(mod d),m = ,u/( mod d)
where 0 < . < d—1and é = (p.p), then p+ pr = d. ni = nigs.

Proof: First suppose that (4?)T = A™. By Lemma 4 we conclude that there
exists a permutation matrix P such that PAPT is a direct sum of matrices of types
I, IT given in Lemma 4.

Let § = C'q be a summand of type 1'so that C¥ = z2', 2 > 0 for some positive
integer v. Since index(Cpy) = 1. it follows that ran/»(( 1) = rank(Cy)) = 1.

T

6
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Suppose Cy11 = 4T for some & > 0,4 > 0. Now using (Cfl)T = C7j. it can be
shown that Cy; is symmetric and hence doubly stochastic. It is well known that a
positive, rank one doubly stochastic matrix must be % Jixk for some k.

Now suppose S is a summand of type II and let

0 Ci2 0 - 0 ]
0 0 Coz - 0
S = :
0 0o - Ci1d
[ Ca 0 - 0 |
where the zero blocks on the diagonal are square of order ny, --- . ng4. respectively.

As observed in the remark following Lemma 4, there exists a positive integer u such
that S9 is a direct sum of d positive, symmetric, idempotent, rank one matrices.

We first claim that rank(Ciq) = rank(Cas) = -+ = rank(Cq1) = 1. For oth-
erwise, rank(S) > d. However, rank($%) = d and since indez(S5) = 1,rank(S) =
rank(S%), giving a contradiction. Therefore, the claim is proved. We let Cyo =
zlyQT,ng = mgyg, N O zdyf, where z;,y; are positive vectors. Since
C12.Ca3. -+ ,Cq1 have rank one, we may choose z; = Jn, x1. 1<1<d.

In view of the description of §% given earlier, we may write |

(012 Coz -+ Cdl)u = MCT

for some positive vector z. Thus

(2197 o293 -+ zayl ) = 22"

and hence /\:vlle — 227 for some A > 0. It follows that y; = 71J,, x1 for some
v1 > 0. Similarly we conclude that y; = 7; Jux1:7 > 0,1 <@ < d. Now,
interpreting subscripts modulo d as usual, we have

Ci,i+l = ar,'y;ﬂl (2)
= Jn,xl (’7i+1 Jn,+1x1)T

= ’7i+1 JTI,XTL,+1
1

- JTl,X'Vl,+) K
Nit1

since C;;4 has row sums one, 1 <@ < d. The remaining assertions in (ii) follow

from Lemma 5.
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Conversely, it is clear that if S is a summand of type [ or II, then (57)T = §™.
That completes the proof.

Corollary 1: Let A be an n X n stochastic matrix of index one and suppose
(AP)T = A™ where p < m are positive integers with (p,m) = 1. Then there exists a
permutation matrix P such that PAPT is a direct sum of matrices of the following
types I and II:

1. % Jixx for some positive integer k

2. Ji¢. ... ¢ for some positive integer £, occuring d times and d divides p + m.

Proof: By Theorem 1 there exists a permutation matrix P such that PAPT is
a direct sum of matrices of types I, II given in Theorem 1. Consider a summand
of type II, say JA(nl’ womg)- Let w=p mod d,u' = m mod d. Then by Theorem
1, p+ ¢/ = d and n; = n,4s. where 6 is the g.c.d. of p,p'. Since (p.m) =1 and
p+ u' = d, it follows that 6 = 1. Thus ny =ne = --- =ng = ¢, say. Thus the
summand equals JA(L gy Also. p+ u' = d implies that p 4+ m = 0 mod d and thus
d divides p + m.
We now derive the main result in [5].

Corollary 2: Let A be an n x n stochastic matrix and suppose AT = A™ for
some positive integer m > 1. Then there exists a permutation matrix P such that
PAPT is a direct sum of matrices of the following two types I and II:

1. % Jixk for some positive integer k

2. JA(L .. ) for some positive integer ¢. where £ occurs d times and d divides
m + 1.

Proof: By Lemma 1, indez(A) = 1. Since the g.c.d. of 1,m is I, by Corollary 1
there exists a permutation matrix P such that PAPT is a direct sum of matrices of
types I and II given in Corollary 1. The rest of the proof follows easily.

Our next objective is to describe a stochastic matrix A. not necessarily of index
one, which satisfies (A7) = A™ for positive integers p < m.

If Ais an nx n matrix, then recall that A can be expressed as A = C4+ N4 where
C 4, the core part of A, is of index one, N4 is nilpotent and C4Nq = NgCyx = 0.
This is referred to as the core-nilpotent decomposition of A. We refer to [2] for basic
properties of this decomposition.

Lemma 6: Let 4 be a stochastic n X n matrix such that (AP)T = A™. where
p < m are positive integers. Let A = Cq+ Ny be the core-nilpotent decomposition.
Then C4 is nonnegative and stochastic.
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Proof: By Lemma 1, indez(A) < p. Then A? = C4- Since index(Cy) = 1, we
can write Cyq = CZX for some matrix X. Now

AP(AP)#C 4 AP(APY* Ch X (3)
AP(APY* APX

APX

ChX

= Ca

and then

AP(AP)#(Cy + Na) (4)
Ca+ AP(APY¥ Ny

Ca+ (AP)* CAN,4

= (Cy4

AP(AP)* A

Since (AP)# is a power of A, as observed in the proof of Lemma 3, it follows that
C 4 is also a power of A. Thus C4 is nonnegative and stochastic.

Theorem 2: Let A be an n x n stochastic matrix. Then (AP)T = A™, where
p < m are positive integers if and only if there exists a permutation matrix P such
that PAPT is a direct sum of matrices Cj; + Ny, 1 < ¢ < k where

1. C;; are stochastic matrices of indez1, N;; are nilpotent matrices of index < p
with sum of entries of each row as zero, CzN; = 0= NiCii, 1 < ¢ <k, and

2. Each C;; is a direct sum of matrices of types (I) and (II) as described in
Theorem 1.

Proof: ’‘Onlyif’ part: By Lemma 1. indez(A) < pand hence A? = Ch.A™ =C7}.
Thus (CZ)T = C7. Since indez(C4) = 1 and by Lemma 6 C 4 is stochastic,
Theorem 1 yields that there exists a permutation matrix P such that PC4PT is a
direct sum of matrices of types I, Il as given in Theorem 1.

Let

PAPT = [Ay]. PCAPT = ((Ca)ig). PNAPT = [(Na)y)

be compatible partitions. Note that (Cyx);; = 0if ¢ # J. Since A;; = (Ca)i; +
(Na)i;. we get that (Na);; > 0 for i # j. However, since C4yN4 = 0, we have

9
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(Ca)ii(Na)i; = 0,1 # j. It follows from the description of (C4 )i, in Theorem 1 and
the remark following Lemma 4 that for some positive interger s, (C4)j; has positive
diagonal entries. This, along with (C4)ii(Na)i; =0, and (N4);; > 0 for ¢ # 7, yield
(NA),'j = (. Thus Aij = 0.7 # j. Setting Ciu = (CA),',', Ny = (NA),',‘ for all ¢, the
result follows. °If part’ is straightforward.

We conclude with an example. Let

X

il
Wi S &S
O O NI

Wi=WN D O

Then A is stochastic and (A%)T = A%. The core-nilpotent decomposition is given
by A=C4+ Ny, where

00 3 3 0 0 00
o0 3 3 | 0 0 00
CA_%%OO Na=120 1 ¢

Fioo Lo

Thus Cy4 is stochastic and is of type II as described in Theorem 2. This example
also shows that N4 need not be nonnegative.

Acknowledgement:  The authors would like to thank the referee for his helpful
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