POLYNOMIAL RINGS WITH A PIVOTAL MONOMIAL!
S. K. JAIN?

1. Amitsur in his paper on Finite Dimensional Central Division
Algebras [1] has proved that in a division ring D with center C,
(D:C)£n*< = if and only if every primitive homomorphic image of a
polynomial ring D|x] is a complete matrix ring 44, # <n, over a divi-
sion ring A. Equivalently speaking, a division ring is finite dimen-
sional over its center if and only if the polynomial ring over it has a
J-prvotal monomial (written as JPN). The object of this note is to
show that if R is a ring with a nilpotent (Jacobson) radical then the
polynomial ring R{x] has a JPM if and only if R[x] has a polynomial
identity. Amitsur's result then follows as a special case of our result.
Our proof of Theorem 1, in obtaining sufficiency, is on the same lines
as that of Amitsur.

2. We begin with

THEOREM 1. Let R be a primitive algebra over its centroid C. Then
(R:C)En*< o if and only if every primitive homomorphic image of
R{x] is a complete matrix ring As, h En, over a division ring A.

PrROOF OF THE THEOREM: NECESSITY. Let (R:C) £n?< . Then it
15 well known that R satisfies a minimal polynomial identity Si(x)
= Zix”x,z -+« xq, of degree d =2n. This identity also holds in
R[x]. Since a primitive ring with a polynomial identity of degree d is
a central simple algebra with a dimensionality <[d/2]? it follows
that each primitive homomorphic image of R[x] is a central simple
algebra of dimension < [d/2]?; and therefore it is isomorphic to 4,
for some division algebra 4 and for r £d/2 £#. This proves necessity.

Before we obtain sufficiency we recall for convenience the defini-
tion of a J-pivotal monomial in a ring. Let Ay, - - -, A, be a set of
noncommutative indeterminates and let #(A)=\; - - -\, be a
monomial of degree d in the ;. Let P, denote the set of all monomials
o(N\) =N\;, - - -+ Nj, such that either ¢>d or ¢<d with j,=1, for some
h £q. We call a monomial 7(\) a right J-pivotal monomial for a ring
R if for every substitution \;=x;&R, w(x)r is right-quasi-regular
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mod  ,zp, ¢(X)R, for all r&R. Aring with a right J-pivotal mono-
mial is called a right JPM-ring. Henceforth a JPM-ring shall mean a
right JPM-ring. It is proved in [2] that a ring R has a J-pivotal
monomial of degree d if and only if every (right) primitive homo-
morphic image of R is a full matrix ring Dy over a division ring D
with 2 =d. A simple but an important consequence of the definition
of a JPM-ring may be recorded in

SUBLEMMA. 4 homomor phic vnage of a JPM-ring is also a JPM-
ring. In particular, if Rlx) has a JPAM then its homomor phic image R
is also a JPM-ring.

Sufficiency. Let R be a primitive ring such that every primitive
homomorphic image of R[x] is a complete matrix ring 44, & <n, over
a division ring 4, viz., Rx] has a JPM of degree n. So that by the
sublemma R has JPM of degree n and consequently, it is full matrix
ring A4, k= n over a division ring 4. Therefore we have

Rlx] = Ax[x] == (4[x])a.
We can assume that
R[x] = (A[z])s = 84, = A[x].
Consider the maximal right ideal
I=(x—a)d[x], a & 4.

We note that each primitive ideal of 4 [x] will be maximal ideal of
4 [x]. Therefore if P=p(x)4 [x] (4[x] is a principal ideal ring) be a
primitive ideal contained in I, then P is a maximal ideal in4[x]=S.
Since S has unity, S/P is a simple primitive ring. Then the iso-
morphism

Su/ Py =2 (S/ P

gives that S,/P, is a primitive ring. Accordingly, S,/Py=~D, with
r <n. Further if I.=(x—uau14 [x], 0=#uE A, then it can be veri-
fied that

Py =N L)
Since Si/Py=D,, we can find 7 elements uy, + -+, #, such that
Aa[x] D T D s N Tuh D - - -
D T N TN N\ (I, )n = P,

Observing that (Iu);.=(x—uau‘1)Ah[x], we can claim that p(x) is a
left common divisor of polynomials x —u,au;! and therefore degree of
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p(x) Er. It follows therefore that for each a in . there exists a poly-
nomial p(x) of degree =<n with coefficients in center such that
x—a is a right divisor of p(x). Hence p(a) =0. This implies 4 is an
algebraic algebra of bounded degree. By Kaplansky [5] 4 satisfies
a polynomial identity and is finite dimensional over its center. FHence
R=4, 1s finite dimensional over its center (=centroid, since R has
a unity). This completes the proof.
Next we prove

THEOREM 2. Let R be a ring having its (Jacobson) radical nilpotent.
Then R[x] has JPAM if and only if R[x] has PI.

Proor: NEcEssiTy. Let J be radical of R and J»=0. Let R{x] have
JPN of degree n. Let P be a primitive homomorphic image of
R=R/J. Then this, along with natural homomorphism induces the
diagram

Rfz] — R[x] - Plx].

By the sublemma 2 [x] has JPM and therefore Theorem 1 gives that
P satisfies a standard identity of degree <2x. Consequently, R which
is a subdirect sum of its primitive images satisfies a standard identity
Sa(x) =0 of degree d <2n. This implies R satisfies [S2n(x)]m=0. The
sufficiency is easy and therefore omitted.

REMARK 1. The theorem is still true for a ring R having its radical
satisfying some polynomial identity. For if J satisfies an identity
pley, « -+, x)=0, then R will satisfy p[Sp(x!, - - -, ), * -
SZn(xfr o vx;n)]“_‘()-

REMARK 2. The theorem is also true for a ring R with a strongly
pivotal monomial and nil radical. For, in this case, radical will be
nilpotent.

Belluce and Jain [3] have shown that a primitive ring satisfies a
polynomial identity if and only if (1) it has at most a finite number of
orthogonal idempotents (written as Fl-ring), and (2) it has a nonzero
one-sided ideal satisfying some polynomial identity. This result along
with Theorem 2 gives the following,

]

THEOREM 3. Let R be a primitive algebra over its centroid C. Then
(R:C)£n*< o if and only if R is an Fl-ring having a nonzero one-
sided ideal I such that every primitive homomorphic image of Ilx]isa
complete matrix ring A, h<n, over a division ring A.
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